1
|
Castellanos JS, Betancourt DE, Díaz-Báez D, Baldión PA. Effect of flavonoids from grape seed and cranberry extracts on the microbiological activity of Streptococcus mutans: a systematic review of in vitro studies. BMC Oral Health 2024; 24:662. [PMID: 38840232 PMCID: PMC11155149 DOI: 10.1186/s12903-024-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE To provide an overview of the available scientific evidence from in vitro studies regarding the effect induced by the flavonoids contained in grape seed extracts (GSE) and cranberry on the microbiological activity of Streptococcus mutans (S. mutans). METHODS This systematic review was performed following the parameters of the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Electronic and manual searches were conducted using PubMed, ScienceDirect, Web of Science, EBSCO, and Cochrane databases. Reference lists of selected articles were reviewed to identify relevant studies. The search was not limited by year and was conducted solely in English. Eligible studies comprised publications describing in vitro studies that evaluated the effect of flavonoids derived from GSE and cranberry extracts on the microbiological activity of S. mutans. Common variables were identified to consolidate the data. Authors of this review independently screened search results, extracted data, and assessed the risk of bias. RESULTS Of the 420 studies identified from the different databases, 22 publications were finally selected for review. The risk of bias was low in 13 articles and moderate in 9. The studies analyzed in this review revealed that cranberry extract has an inhibitory effect on the bacterial growth of S. mutans in ranges from 0.5 mg/mL to 25 mg/mL, and GSE exerts a similar effect from 0.5 mg/mL to 250 mg/mL. Additionally, the extracts or their fractions showed reduced biofilm formation capacity, decreased polymicrobial biofilm biomass, deregulation of glycosyltransferases (Gtf) B and C expression, and buffering of pH drop. In addition to adequate antioxidant activity related to polyphenol content. CONCLUSIONS The overall results showed that the extracts of cranberry and grape seed were effective in reducing the virulence factors of the oral pathogen. According to the data, proanthocyanidins are the active components in cranberry and grape seed that effectively resist S. mutans. They can inhibit the formation of insoluble polysaccharides in the extracellular matrix and prevent glycan-mediated adhesion, cohesion, and aggregation of the proteins in S. mutans. This suggests that these natural extracts could play an important role in the prevention of cariogenic bacterial colonization, as well as induce a decrease in their microbiological activity.
Collapse
Affiliation(s)
- Jeison Stiven Castellanos
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia. Av, Cra 30 No. 45-03, Edificio 210, Of. 311, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia. Av, Cra 30 No. 45-03, Edificio 210, Of. 311, Bogotá, Colombia
| | - David Díaz-Báez
- Unit of Oral Basic Investigation - UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia. Av, Cra 30 No. 45-03, Edificio 210, Of. 311, Bogotá, Colombia.
| |
Collapse
|
2
|
Nie Q, Wan X, Tao H, Yang Q, Zhao X, Liu H, Hu J, Luo Y, Shu T, Geng R, Gu Z, Fan F, Liu Z. Multi-function screening of probiotics to improve oral health and evaluating their efficacy in a rat periodontitis model. Front Cell Infect Microbiol 2023; 13:1261189. [PMID: 38029238 PMCID: PMC10660970 DOI: 10.3389/fcimb.2023.1261189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The oral cavity is the second most microbially rich region of the human body, and many studies have shown that there is a strong association between microorganisms and oral health. Some pathogenic bacteria produce biofilms and harmful metabolites in the mouth that may cause oral problems such as oral malodor, periodontitis, and dental caries. Altering the oral microbiota by using probiotics may alleviate oral health problems. Thus, using multi-function screening, we aimed to identify probiotics that can significantly improve oral health. The main parameters were the inhibition of pathogenic bacteria growth, inhibition of biofilm formation, reduction in the production of indole, H2S, and NH3 metabolites that cause halitosis, increase in the production of H2O2 to combat harmful bacteria, and co-aggregation with pathogens to prevent their adhesion and colonization in the oral cavity. Tolerance to cholic acid and choline was also assessed. Bifidobacterium animalis ZK-77, Lactobacillus salivarius ZK-88, and Streptococcus salivarius ZK-102 had antibacterial activity and inhibited biofilm production to prevent caries. They also improved the oral malodor parameter, H2S, NH3, and indole production. The selected probiotics (especially L. salivarius ZK-88) alleviated the inflammation in the oral cavity of rats with periodontitis. The analysis of the gingival crevicular fluid microbiome after probiotic intervention showed that B. animalis ZK-77 likely helped to restore the oral microbiota and maintain the oral microecology. Next, we determined the best prebiotics for each candidate probiotic in order to obtain a formulation with improved effects. We then verified that a probiotics/prebiotic combination (B. animalis ZK-77, L. salivarius ZK-88, and fructooligosaccharides) significantly improved halitosis and teeth color in cats. Using whole-genome sequencing and acute toxicity mouse experiments involving the two probiotics, we found that neither probiotic had virulence genes and they had no significant effects on the growth or development of mice, indicating their safety. Taking the results together, B. animalis ZK-77 and L. salivarius ZK-88 can improve oral health, as verified by in vivo and in vitro experiments. This study provides a reference for clinical research and also provides new evidence for the oral health benefits of probiotics.
Collapse
Affiliation(s)
- Qingqing Nie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Tao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Haixia Liu
- Huayuan Biotechnology Institute, Beijing, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Shu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Geng
- Huayuan Biotechnology Institute, Beijing, China
| | - Zhijing Gu
- Huayuan Biotechnology Institute, Beijing, China
| | - Fengkai Fan
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kripalani KB, Thomas NA, Thimmaiah C, Raj K, Philip LMN, Kajjari S, Oommen VM. Comparative Evaluation of the Phytochemical Analysis and Efficacy of Four Plant-derived Extracts against Streptococcus mutans: An In Vitro Study. Int J Clin Pediatr Dent 2023; 16:258-262. [PMID: 38268637 PMCID: PMC10804304 DOI: 10.5005/jp-journals-10005-2649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Introduction Oral health is a loyal part of general health. As per the World Health Organization (WHO), dental caries is the most widespread noncommunicable disease and is a significant universal public health concern. The main causative organism associated with this disease is Streptococcus mutans (S. mutans). Various synthetic agents like chlorhexidine and fluorides are commercially available to prevent dental caries. However, these have side effects. Presently, research is engaged in the use of plant extracts to develop an effective and biocompatible material that may be used safely in the oral cavity. Methodology Four plants were collected-Emblica officinalis, Vitis vinifera seeds, Psidium guajava (P. guajava) Linn leaves, and Acacia nilotica (A. nilotica), and extracts were prepared individually. These extracts were subjected to phytochemical analysis, and bacterial growth and fermentation were assessed. Result The level of significance was set at p < 0.05. All the plant extracts inhibited S. mutans growth at all serial dilutions except P. guajava Linn and A. nilotica showing 55 CFU/mL and 5 CFU/mL, respectively in 1/1000 dilution only. The phytochemical analysis confirmed that all four plant extracts had alkaloids, carbohydrates, tannins, and flavonoids. Steroids and proteins are present in P. guajava Linn. Proanthocyanidins were present in Vitis vinifera. Saponins and Anthraquinones were present in A. nilotica exclusively. Conclusion All the extracts were effective against S. mutans. These could be tried as herbal alternatives to conventional adjuncts. However, these results must be additionally evaluated for toxicity in animal models, and effectiveness must be assessed using in vivo studies on human subjects. How to cite this article Kripalani KB, Thomas NA, Thimmaiah C, et al. Comparative Evaluation of the Phytochemical Analysis and Efficacy of Four Plant-derived Extracts against Streptococcus mutans: An In Vitro Study. Int J Clin Pediatr Dent 2023;16(S-3):S258-S262.
Collapse
Affiliation(s)
| | - Nithya Annie Thomas
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Charisma Thimmaiah
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Raj
- Department of Pediatric and Preventive Dentistry, AJ Institute of Dental Sciences, Mangaluru, Karnataka, India
| | - Lida Mary N Philip
- Department of Oral and Maxillofacial Surgery, AJ Institute of Dental Sciences, Mangaluru, Karnataka, India
| | - Shweta Kajjari
- Department of Pediatric and Preventive Dentistry, KLE V.K. Institute of Dental Sciences, KLE Academy of Higher Education & Research, Belagavi, Karnataka, India
| | - Vinni Mary Oommen
- Department of Prosthodontics, Al-Azhar Dental College, Perumpillichira P.O., Thodupuzha, Idukki, Kerala, India
| |
Collapse
|
4
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
5
|
Bhattacharya R, Sourirajan A, Sharma P, Kumar A, Upadhyay NK, Shukla RK, Dev K, Krishnakumar B, Singh M, Bose D. Bioenhancer potential of Aegle marmelos (L.) Corrêa essential oil with antifungal drugs and its mode of action against Candida albicans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Iacopetta D, Ceramella J, Catalano A, D’Amato A, Lauria G, Saturnino C, Andreu I, Longo P, Sinicropi MS. Diarylureas: New Promising Small Molecules against Streptococcus mutans for the Treatment of Dental Caries. Antibiotics (Basel) 2023; 12:112. [PMID: 36671313 PMCID: PMC9855158 DOI: 10.3390/antibiotics12010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Dental caries is a biofilm-mediated disease that represents a worldwide oral health issue. Streptococcus mutans has been ascertained as the main cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms, regulated by the quorum sensing. Diarylureas represent a class of organic compounds that show numerous biological activities, including the antimicrobial one. Two small molecules belonging to this class, specifically to diphenylureas, BPU (1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea) and DMTU (1,3-di-m-tolyl-urea), showed interesting results in studies regarding the antimicrobial activity against the cariogenic bacterium S. mutans. Since there are not many antimicrobials used for the prevention and treatment of caries, further studies on these two interesting compounds and other diarylureas against S. mutans may be useful to design new effective agents for the treatment of caries with generally low cytotoxicity.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Graziantonio Lauria
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
8
|
Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022; 11:foods11172670. [PMID: 36076855 PMCID: PMC9455747 DOI: 10.3390/foods11172670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
The successful application of honey in wound care management has been achieved due to honey’s potent antibacterial effects, characterised by its multifactorial action. Impressive clinical efficacy has ignited its further use in diverse clinical disciplines, including stomatology. Indeed, there is increasing usage of honey in dental medicine as a preventive or therapeutic remedy for some periodontal diseases mainly associated with bacteria, such as dental caries, gingivitis and mucositides. Dental caries is undoubtedly a major oral health problem worldwide, with an increasing tendency of incidence. The purpose of this perspective review is to describe the recent progress in the laboratory and clinical use of honey in the prevention of dental caries, with emphasis on the antibacterial and antibiofilm effects of honey. The role of honey in the cariogenic process is also discussed. In addition, the quality of honey and the urgent in vitro evaluation of its antibacterial/antibiofilm properties before clinical use are highlighted. Findings based on data extracted from laboratory studies demonstrate the pronounced antibacterial effect of different honeys against a number of periodontal pathogens, including Streptococcus mutans. Although the promising antibiofilm effects of honey have been reported mainly against S. mutans, these results are limited to very few studies. From a clinical point of view, honey significantly reduces dental plaque; however, it is not superior to the conventional agent. Despite the positive in vitro results, the clinical effectiveness of honey in the prevention of dental caries remains inconclusive since further robust clinical studies are needed.
Collapse
|
9
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|