1
|
Tang N, Lim JT, Dickens B, Chiew C, Ng LC, Chia PY, Leo YS, Lye DC, Tan KB, Wee LE. Effects of Recent Prior Dengue Infection on Risk and Severity of Subsequent SARS-CoV-2 Infection: A Retrospective Cohort Study. Open Forum Infect Dis 2024; 11:ofae397. [PMID: 39091642 PMCID: PMC11293429 DOI: 10.1093/ofid/ofae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Background and Aims Elucidating whether prior dengue potentially confers cross-protection against COVID-19 is of public health importance in tropical countries at risk of overlapping dengue and COVID-19 epidemics. However, studies to date have yielded conflicting results. We aimed to assess effects of recent prior dengue infection on risk and severity of subsequent SARS-CoV-2 infection among adult Singaporeans. Methods A retrospective cohort study including all adult Singaporeans aged ≥18 years was conducted from 1 July 2021 through 31 October 2022, when a dengue outbreak driven by the DENV3 serotype preceded subsequent waves of SARS-CoV-2 Delta/Omicron transmission in Singapore. SARS-CoV-2 and dengue infection status were classified using national registries. Cox regression models adjusted for demographics, COVID-19 vaccination status, comorbidity, and socioeconomic-status were used to assess risks and severity (hospitalization, severe illness) of SARS-CoV-2 infection occurring after previous recorded dengue infection. Results A total of 3 366 399 individuals were included, contributing 1 399 696 530 person-days of observation. A total of 13 434 dengue infections and 1 253 520 subsequent SARS-CoV-2 infections were recorded; with an average of 94.7 days (standard deviation = 83.8) between dengue infection and SARS-CoV-2 infection. Preceding dengue infection was associated with a modest increase in risk of subsequent SARS-CoV-2 infection (adjusted hazards ratio [aHR] = 1.13; 95% confidence interval [CI], 1.08-1.17), and significantly elevated risk of subsequent COVID-19 hospitalization (aHR = 3.25; 95% CI, 2.78-3.82) and severe COVID-19 (aHR = 3.39; 95% CI, 2.29-5.03). Conclusions Increased risk of SARS-CoV-2 infection and adverse COVID-19 outcomes were observed following preceding dengue infection in a national population-based cohort of adult Singaporeans. This observation is of significance in tropical countries with overlapping dengue and COVID-19 outbreaks.
Collapse
Affiliation(s)
- Nicole Tang
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jue Tao Lim
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Borame Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Calvin Chiew
- National Centre for Infectious Diseases, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
| | - Lee Ching Ng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kelvin Bryan Tan
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Liang En Wee
- National Centre for Infectious Diseases, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Lechuga GC, Temerozo JR, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Bou-Habib DC, Morel CM, Provance DW, Souza TML, De-Simone SG. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int J Mol Sci 2024; 25:8180. [PMID: 39125749 PMCID: PMC11311977 DOI: 10.3390/ijms25158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Thiago M. L. Souza
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Vasconcelos LDCM, Leony LM, Camelier AA, Meireles AC, Oliveira Júnior ALFD, Bandeira AC, Macedo YSF, Duarte AO, Van Voorhis W, Siqueira ICD, Santos FLN. Usefulness of receptor binding domain protein-based serodiagnosis of COVID-19. IJID REGIONS 2024; 10:1-8. [PMID: 38045864 PMCID: PMC10687696 DOI: 10.1016/j.ijregi.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
Objectives This study evaluated the performance of recombinant receptor binding domain (RBD) protein-based enzyme-linked immunosorbent assays (RBD-ELISAs) for detecting anti-SARS-CoV-2 immunoglobulin (Ig) G and IgM antibodies. Methods In this study, 705 sera from SARS-CoV-2-infected individuals and 315 sera from healthy individuals were analyzed. Results The RBD-ELISA IgG exhibited high specificity (99.1%) and moderate sensitivity (48.0%), with an overall diagnostic accuracy of 73.5%. RBD-ELISA IgM demonstrated specificity at 94.6% and sensitivity at 51.1%, with an accuracy of 72.8%. Both assays displayed improved performance when analyzing samples collected 15-21 days post-symptom onset, achieving sensitivity and accuracy exceeding 88% and 90%, respectively. Combining RBD-ELISA IgG and IgM in parallel analysis enhanced sensitivity to 98.6% and accuracy to 96.2%. Comparing these RBD-ELISAs with commercially available tests, the study found overlapping sensitivity and similar specificity values. Notably, the combined RBD-ELISA IgG and IgM showed superior performance. Cross-reactivity analysis revealed low false-positive rates (4.4% for IgG, 3.7% for IgM), primarily with viral infections. Conclusion This research underscores the potential of RBD-based ELISAs for COVID-19 diagnosis, especially when assessing samples collected 15-21 days post-symptom onset and utilizing a parallel testing approach. The RBD protein's immunogenicity and specificity make it a valuable tool for serodiagnosis, offering an alternative to polymerase chain reaction-based methods, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | - Leonardo Maia Leony
- Advanced Public Health Laboratory, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Salvador, Brazil
| | - Aquiles Assunção Camelier
- Aliança D'Or Hospital, Salvador, Brazil
- Bahia School of Medicine and Public Health, Salvador, Brazil
- State University of Bahia, Salvador, Brazil
| | | | | | | | - Yasmin Santos Freitas Macedo
- Laboratory of Experimental Pathology, Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Alan Oliveira Duarte
- Laboratory of Experimental Pathology, Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | | | - Isadora Cristina de Siqueira
- Laboratory of Experimental Pathology, Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas Disease from FIOCRUZ (Fio-Chagas), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Salvador, Brazil
- Integrated Translational Program in Chagas Disease from FIOCRUZ (Fio-Chagas), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
De-Simone SG, Napoleão-Pêgo P, Lechuga GC, Carvalho JPRS, Monteiro ME, Morel CM, Provance DW. Mapping IgA Epitope and Cross-Reactivity between Severe Acute Respiratory Syndrome-Associated Coronavirus 2 and DENV. Vaccines (Basel) 2023; 11:1749. [PMID: 38140154 PMCID: PMC10747746 DOI: 10.3390/vaccines11121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of the mucosal immune response. This article describes a comprehensive mapping of IgA epitopes of the S protein, its cross-reactivity, and the development of an ELISA-peptide assay. METHODS IgA epitope mapping was conducted using SPOT synthesis and sera from RT-qPCR COVID-19-positive patients. Specific and cross-reacting epitopes were identified, and an evolutionary analysis from the early Wuhan strain to the Omicron variant was performed using bioinformatics tools and a microarray of peptides. The selected epitopes were chemically synthesized and evaluated using ELISA-IgA. RESULTS A total of 40 IgA epitopes were identified with 23 in S1 and 17 in the S2 subunit. Among these, at least 23 epitopes showed cross-reactivity with DENV and other organisms and 24 showed cross-reactivity with other associated coronaviruses. Three MAP4 polypeptides were validated by ELISA, demonstrating a sensitivity of 90-99.96% and a specificity of 100%. Among the six IgA-RBD epitopes, only the SC/18 epitope of the Omicron variants (BA.2 and BA.2.12.1) presented a single IgA epitope. CONCLUSIONS This research unveiled the IgA epitome of the S protein and identified many epitopes that exhibit cross-reactivity with DENV and other coronaviruses. The S protein of variants from Wuhan to Omicron retains many conserved IgA epitopes except for one epitope (#SCov/18). The cross-reactivity with DENV suggests limitations in using the whole S protein or the S1/S2/RBD segment for IgA serological diagnostic tests for COVID-19. The expression of these identified specific epitopes as diagnostic biomarkers could facilitate monitoring mucosal immunity to COVID-19, potentially leading to more accurate diagnoses and alternative mucosal vaccines.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Maria E. Monteiro
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
5
|
Westphal T, Mader M, Karsten H, Cords L, Knapp M, Schulte S, Hermanussen L, Peine S, Ditt V, Grifoni A, Addo MM, Huber S, Sette A, Lütgehetmann M, Pischke S, Kwok WW, Sidney J, Schulze zur Wiesch J. Evidence for broad cross-reactivity of the SARS-CoV-2 NSP12-directed CD4 + T-cell response with pre-primed responses directed against common cold coronaviruses. Front Immunol 2023; 14:1182504. [PMID: 37215095 PMCID: PMC10196118 DOI: 10.3389/fimmu.2023.1182504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.
Collapse
Affiliation(s)
- Tim Westphal
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Maria Mader
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Karsten
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marc Lütgehetmann
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Pischke
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|