1
|
Illidge S, Kort R, Hertzberger R. 'From women for women': A citizen science approach engaging women in the isolation and application of the vaginal health-associated bacterium Lactobacillus crispatus. PLoS One 2024; 19:e0308526. [PMID: 39527509 PMCID: PMC11554043 DOI: 10.1371/journal.pone.0308526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
A vaginal microbiome rich in Lactobacillus crispatus is associated with good reproductive and sexual health outcomes. Dysbiosis, indicated by the loss of Lactobacillus crispatus, is a risk factor for urogenital infections, such as the clinical diagnosis of bacterial vaginosis (BV) or urinary tract infections. While many scientists have explored probiotics using a conventional pharmaceutical approach, concerns about accessibility and affordability prompt an investigation into a preventive approach using this naturally occurring bacterium. Our study aimed to explore a potential woman-friendly vaginal probiotic product using the naturally occurring bacterium, Lactobacillus crispatus. Citizen scientists actively participated in a two-day practicum and successfully performed the procedures using self-collected vaginal swabs. The practicum received positive responses from participants who demonstrated notable engagement and enthusiasm. With expert guidance, participants without a laboratory background were able to execute assigned tasks successfully. From the Dutch crispatus Citizen Science Collective of 48 women, 22 succeeded in isolating their own Lactobacillus crispatus strains using a Loop-Mediated Isothermal Amplification (LAMP) protocol for identification. Additionally, 48 metagenomes and 54 whole genomes from 22 individuals were sequenced for comparative analysis. This project effectively engaged a community of women in the isolation of Lactobacillus crispatus strains from their vaginal microbiota, followed by in vitro characterization experiments and a hackathon for the development of a probiotic product. Our citizen science approach opens up collaboration possibilities and new avenues for exploration of vaginal health, facilitating community involvement and the development of targeted interventions to enhance women's well-being.
Collapse
Affiliation(s)
- Shardelice Illidge
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Stichting crispatus, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| | - Rosanne Hertzberger
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Stichting crispatus, Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Alessandri G, Mancabelli L, Fontana F, Lepore E, Forte G, Burratti M, Ventura M, Turroni F. Disclosing α-lactalbumin impact on the intestinal and vaginal microbiota of women suffering from polycystic ovary syndrome. Microb Biotechnol 2024; 17:e14540. [PMID: 39364592 PMCID: PMC11450379 DOI: 10.1111/1751-7915.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 10/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most widespread endocrinopathy affecting women of reproductive age with detrimental effects on life quality and health. Among several mechanisms involved in its aetiopathogenesis, recent studies have also postulated the involvement of the vaginal and intestinal microbiota in the development of this disorder. In this study, an accurate insight into the microbial changes associated with PCOS was performed through a pooled-analysis highlighting that this syndrome is characterized by intestinal and vaginal dysbiosis with a reduction of beneficial microorganisms and a higher proportion of potential pathogens. Based on this observation, we evaluated the ability of a milk-derived protein exerting positive outcomes in the management of PCOS, that is, α-lactalbumin (α-LA), to recover PCOS-related dysbiosis. In vitro experiments revealed that this protein improved the growth performances of members of two health-promoting bacterial genera, that is, Bifidobacterium and Lactobacillus, depleted in both intestinal and vaginal microbiota of PCOS-affected women. In addition, α-LA modulated the taxonomic composition and growth performances of the microbial players of the complex intestinal and vaginal microbiota. Finally, an in vivo pilot study further corroborated these observations. The oral administration of α-LA for 30 days to women with PCOS revealed that this protein may have a role in favouring the growth of health-promoting bacteria yet limiting the proliferation of potential pathogens. Overall, our results could pave the way to the use of α-LA as a valid compound with 'prebiotic effects' to limit/restore the PCOS-related intestinal and vaginal dysbiosis.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | | | | | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
3
|
Oyenihi AB, Haines R, Trama J, Faro S, Mordechai E, Adelson ME, Osei Sekyere J. Molecular characterization of vaginal microbiota using a new 22-species qRT-PCR test to achieve a relative-abundance and species-based diagnosis of bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1409774. [PMID: 39006741 PMCID: PMC11239351 DOI: 10.3389/fcimb.2024.1409774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Background Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and β-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.
Collapse
Affiliation(s)
- Ayodeji B Oyenihi
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Ronald Haines
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Jason Trama
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Sebastian Faro
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
- Memorial Women's Care, Houston, TX, United States
| | - Eli Mordechai
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Martin E Adelson
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - John Osei Sekyere
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| |
Collapse
|
4
|
Morselli S, Ceccarani C, Djusse ME, Laghi L, Camboni T, Consolandi C, Foschi C, Severgnini M, Marangoni A. Anti-chlamydial activity of vaginal fluids: new evidence from an in vitro model. Front Cell Infect Microbiol 2024; 14:1403782. [PMID: 38912205 PMCID: PMC11193362 DOI: 10.3389/fcimb.2024.1403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.
Collapse
Affiliation(s)
- Sara Morselli
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Marielle Ezekielle Djusse
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Joseph A, Anton L, Guan Y, Ferguson B, Mirro I, Meng N, France M, Ravel J, Elovitz MA. Extracellular vesicles from vaginal Gardnerella vaginalis and Mobiluncus mulieris contain distinct proteomic cargo and induce inflammatory pathways. NPJ Biofilms Microbiomes 2024; 10:28. [PMID: 38514622 PMCID: PMC10957959 DOI: 10.1038/s41522-024-00502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Colonization of the vaginal space with bacteria such as Gardnerella vaginalis and Mobiluncus mulieris is associated with increased risk for STIs, bacterial vaginosis, and preterm birth, while Lactobacillus crispatus is associated with optimal reproductive health. Although host-microbe interactions are hypothesized to contribute to reproductive health and disease, the bacterial mediators that are critical to this response remain unclear. Bacterial extracellular vesicles (bEVs) are proposed to participate in host-microbe communication by providing protection of bacterial cargo, delivery to intracellular targets, and ultimately induction of immune responses from the host. We evaluated the proteome of bEVs produced in vitro from G. vaginalis, M. mulieris, and L. crispatus, identifying specific proteins of immunologic interest. We found that bEVs from each bacterial species internalize within cervical and vaginal epithelial cells, and that epithelial and immune cells express a multi-cytokine response when exposed to bEVs from G. vaginalis and M. mulieris but not L. crispatus. Further, we demonstrate that the inflammatory response induced by G. vaginalis and M. mulieris bEVs is TLR2-specific. Our results provide evidence that vaginal bacteria communicate with host cells through secreted bEVs, revealing a mechanism by which bacteria lead to adverse reproductive outcomes associated with inflammation. Elucidating host-microbe interactions in the cervicovaginal space will provide further insight into the mechanisms contributing to microbiome-mediated adverse outcomes and may reveal new therapeutic targets.
Collapse
Affiliation(s)
- Andrea Joseph
- Women's Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| | - Lauren Anton
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuxia Guan
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Briana Ferguson
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Mirro
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nova Meng
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michal A Elovitz
- Women's Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| |
Collapse
|
6
|
Guo X, Hong X, Qian H, Qiao D, Wang B, Yu H. Relationship between vaginal microbiota and chorioamnionitis: A prospective cohort study. Microb Pathog 2024; 186:106458. [PMID: 38092132 DOI: 10.1016/j.micpath.2023.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/02/2024]
Abstract
OBJECTIVE This study aimed to determine the association between vaginal microbiota and chorioamnionitis and its predictive value. METHODS Thirty pregnant women in their third trimester were prospectively recruited. The participants were categorized into three groups based on their clinical manifestations and placental pathology: the clinical chorioamnionitis group (IP group), the asymptomatic histological chorioamnionitis group (CP group), and the healthy control group (CN group). Basic data and medical history were collected from each participant. Vaginal samples were collected before delivery and analyzed using microbial diversity sequencing. RESULTS No significant differences were observed in age, body mass index, and education among the groups (P > 0.05). However, the IP group exhibited higher rates of low birth weight (60 % vs 20 % vs 0 %, P = 0.008) and respiratory distress syndrome (50 % vs 20 % vs 0 %, P = 0.003) compared with the CP and CN groups. The Shannon index [2.09 (1.16-3.86) vs 0.84 (0.19-1.11) vs 0.44 (0.25-0.85), P = 0.009] and Simpson index [0.70 (0.41-0.81) vs 0.26 (0.04-0.39) vs 0.11 (0.05-0.29), P = 0.010] in the IP group were higher than those in the CN and CP groups. β diversity analysis indicated that the microbial community structure differed among the three groups, with a 14.1 % variation associated with group differences (P = 0.002). At the genus level, the random forest model revealed that Lactobacillus, Dialister, Prevotella, Ligilactobacillus, and Anaerococcus had Gini indexes higher than 1. Further, linear discriminant analysis (LDA) demonstrated that the abundance of Lactobacillus crispatus in the IP group was lower than in the CN group (LDA >4.0, mean relative abundance 9.19 % vs 54.40 %, P = 0.031). The logistic regression analysis indicated that a decreased abundance of L. crispatus was associated with an increased risk of clinical chorioamnionitis. CONCLUSIONS The reduction of L. crispatus and increasing trend of specific anaerobic groups are associated with the onset of chorioamnionitis, suggesting their potential value in chorioamnionitis identification. The vaginal microbiota could serve as a useful biomarker for predicting future disease and tailoring surveillance efforts. Additionally, it may present a viable target for developing prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Huiqin Qian
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Dongyan Qiao
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Panin AN, Chikileva IO, Abashina TN, Melnikov VG, Suzina NE, Nikonov IN, Akhmetzyanova AA, Khlebnikov VS, Sakulin VK, Vasilenko RN, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Protective Properties of S-layer Protein 2 from Lactobacillus crispatus 2029 against Candida albicans Infections. Biomolecules 2023; 13:1740. [PMID: 38136611 PMCID: PMC10741940 DOI: 10.3390/biom13121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Previously, the protective role of the S-layer protein 2 (Slp2) of the vaginal Lactobacillus crispatus 2029 (LC2029) strain against foodborne pathogens Campylobacter jejuni, Salmonella enterica serovar Enteritidis, and Escherichia coli O157:H was demonstrated. We demonstrate the new roles of the Slp2-positive LC2029 strain and soluble Slp2 against C. albicans infections. We show that LC2029 bacteria can adhere to the surface of the cervical epithelial HeLa cells, prevent their contact with C. albicans, and block yeast transition to a pathogenic hyphal form. Surface-bound Slp2 provides the ability for LC2029 to co-aggregate with various C. albicans strains, including clinical isolates. C. albicans-induced necrotizing epithelial damage is reduced by colonization with the Slp2-positive LC2029 strain. Slp2 inhibits the adhesion of various strains of C. albicans to different human epithelial cells, blocks yeast transition to a pathogenic hyphal form, and prevents the colonization and pathogenic infiltration of mucosal barriers. Only Slp2 and LC2029 bacteria stimulate the production of protective human β-defensin 3 in various epithelial cells. These findings support the anti-Candida albicans potential of the probiotic LC2029 strain and Slp2 and form the basis for further research on their ability to prevent and manage invasive Candida infections.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia;
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia (R.N.V.)
| | - Raisa N. Vasilenko
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia (R.N.V.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
8
|
Tarracchini C, Argentini C, Alessandri G, Lugli GA, Mancabelli L, Fontana F, Anzalone R, Viappiani A, Turroni F, Ventura M, Milani C. The core genome evolution of Lactobacillus crispatus as a driving force for niche competition in the human vaginal tract. Microb Biotechnol 2023; 16:1774-1789. [PMID: 37491806 PMCID: PMC10443340 DOI: 10.1111/1751-7915.14305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio SrlParmaItaly
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
9
|
Zhang D, Zhang J, Kalimuthu S, Liu J, Song ZM, He BB, Cai P, Zhong Z, Feng C, Neelakantan P, Li YX. A systematically biosynthetic investigation of lactic acid bacteria reveals diverse antagonistic bacteriocins that potentially shape the human microbiome. MICROBIOME 2023; 11:91. [PMID: 37101246 PMCID: PMC10134562 DOI: 10.1186/s40168-023-01540-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lactic acid bacteria (LAB) produce various bioactive secondary metabolites (SMs), which endow LAB with a protective role for the host. However, the biosynthetic potentials of LAB-derived SMs remain elusive, particularly in their diversity, abundance, and distribution in the human microbiome. Thus, it is still unknown to what extent LAB-derived SMs are involved in microbiome homeostasis. RESULTS Here, we systematically investigate the biosynthetic potential of LAB from 31,977 LAB genomes, identifying 130,051 secondary metabolite biosynthetic gene clusters (BGCs) of 2,849 gene cluster families (GCFs). Most of these GCFs are species-specific or even strain-specific and uncharacterized yet. Analyzing 748 human-associated metagenomes, we gain an insight into the profile of LAB BGCs, which are highly diverse and niche-specific in the human microbiome. We discover that most LAB BGCs may encode bacteriocins with pervasive antagonistic activities predicted by machine learning models, potentially playing protective roles in the human microbiome. Class II bacteriocins, one of the most abundant and diverse LAB SMs, are particularly enriched and predominant in the vaginal microbiome. We utilized metagenomic and metatranscriptomic analyses to guide our discovery of functional class II bacteriocins. Our findings suggest that these antibacterial bacteriocins have the potential to regulate microbial communities in the vagina, thereby contributing to the maintenance of microbiome homeostasis. CONCLUSIONS Our study systematically investigates LAB biosynthetic potential and their profiles in the human microbiome, linking them to the antagonistic contributions to microbiome homeostasis via omics analysis. These discoveries of the diverse and prevalent antagonistic SMs are expected to stimulate the mechanism study of LAB's protective roles for the microbiome and host, highlighting the potential of LAB and their bacteriocins as therapeutic alternatives. Video Abstract.
Collapse
Affiliation(s)
- Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jian Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shanthini Kalimuthu
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
10
|
Wu YR, Dong YH, Liu CJ, Tang XD, Zhang NN, Shen J, Wu Z, Li XR, Shao JY. Microbiological composition of follicular fluid in patients undergoing IVF and its association with infertility. Am J Reprod Immunol 2023; 89:e13652. [PMID: 36397134 DOI: 10.1111/aji.13652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM In recent years, the incidence of female infertility has risen sharply, which is affected by many factors. It was recognized that female reproductive tract microbes play a role in the process of female conception. If the reproductive tract microbes could solve a certain proportion of infertility, it would certainly reduce the pain and economic burden of many patients. The objective of this study was to investigate the microbial community composition of follicular fluid in infertile patients and its potential impact on infertility. METHOD OF STUDY Follicular fluid from 49 primary infertility and 52 secondary infertility patients was collected by a negative pressure needle, and the microbiota was analyzed by 16S rDNA sequencing. RESULTS It was found that Lactobacillus, especially L. crispatus, might have a positive effect on female pregnancy. Considering the presence or absence of male factors and different body mass indices, L. iners might inhibit female pregnancy. However, L. iners seemed to play a positive role in egg maturation, while Gardnerella and Cutibacterium acnes might have a negative effect on female pregnancy. CONCLUSIONS This study suggested the potential role of Lactobacillus in follicular fluid in improving female infertility and provided a theoretical basis for the future microbiological treatment of female infertility.
Collapse
Affiliation(s)
- Yue-Rong Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Dan Tang
- Gastroenterology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Gastroenterology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
11
|
Fan Y, Ju T, Bhardwaj T, Korver DR, Willing BP. Week-Old Chicks with High Bacteroides Abundance Have Increased Short-Chain Fatty Acids and Reduced Markers of Gut Inflammation. Microbiol Spectr 2023; 11:e0361622. [PMID: 36719194 PMCID: PMC10100795 DOI: 10.1128/spectrum.03616-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023] Open
Abstract
As important commensals in the chicken intestine, Bacteroides are essential complex carbohydrate degraders, and short-chain fatty acid (SCFA) producers that are highly adapted to the distal gut. Previous studies have shown large variation in Bacteroides abundance in young chickens. However, limited information is available regarding how this variation affects the gut microbiome and host immunity. To investigate how elevated or depleted Bacteroides levels affect gut microbial functional capacity and impact host response, we sampled 7-day-old broiler chickens from 14 commercial production flocks. Week-old broiler chickens were screened and birds with low Bacteroides (LB) and high Bacteroides (HB) abundance were identified via 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) assays. Cecal microbial functionality and SCFA concentration of chickens with distinct cecal Bacteroides abundance were profiled by shotgun metagenomic sequencing and gas chromatography, respectively. The intestinal immune responses of LB and HB chickens were assessed via reverse transcription qPCR. Results showed that the gut microbiota of the LB group had increased abundance of lactic acid bacteria pyruvate fermentation pathway, whereas complex polysaccharide degradation and SCFA production pathways were enriched in the HB group (P < 0.05), which was supported by increased SCFA concentrations in the ceca of HB chickens (P < 0.05). HB chickens also showed decreased expression of interleukin-1β and increased expression of interleukin-10 and tight-junction protein claudin-1 (P < 0.05). Overall, the results indicated that elevated Bacteroides may benefit the 7-day broiler gut and that further work should be done to confirm the causal role of Bacteroides in the observed positive outcomes. IMPORTANCE To date, limited information is available comparing distinct Bacteroides compositions in the chicken gut microbial communities, particularly in the context of microbial functional capacities and host responses. This study showed that possessing a microbiome with elevated Bacteroides in early life may confer beneficial effects to the chicken host, particularly in improving SCFA production and gut health. This study is among the first metagenomic studies focusing on the early life chicken gut microbiota structure, microbial functionality, and host immune responses. We believe that it will offer insights to future studies on broiler gut microbial population and their effects on host health.
Collapse
Affiliation(s)
- Yi Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R. Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Croatti V, Parolin C, Giordani B, Foschi C, Fedi S, Vitali B. Lactobacilli extracellular vesicles: potential postbiotics to support the vaginal microbiota homeostasis. Microb Cell Fact 2022; 21:237. [PMCID: PMC9664694 DOI: 10.1186/s12934-022-01963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Lactobacillus species dominate the vaginal microflora performing a first-line defense against vaginal infections. Extracellular vesicles (EVs) released by lactobacilli are considered mediators of their beneficial effects affecting cellular communication, homeostasis, microbial balance, and host immune system pathways. Up to now, very little is known about the role played by Lactobacillus EVs in the vaginal microenvironment, and mechanisms of action remain poorly understood.
Results
Here, we hypothesized that EVs can mediate lactobacilli beneficial effects to the host by modulating the vaginal microbiota colonization. We recovered and characterized EVs produced by two vaginal strains, namely Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12. EVs were isolated by ultracentrifugation and physically characterized by Nanoparticle Tracking Analysis (NTA) and Dynamic Light Scattering (DLS). EVs protein and nucleic acids (DNA and RNA) content was also evaluated. We explored the role of EVs on bacterial adhesion and colonization, using a cervical cell line (HeLa) as an in vitro model. Specifically, we evaluated the effect of EVs on the adhesion of both vaginal beneficial lactobacilli and opportunistic pathogens (i.e., Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Enterococcus faecalis). We demonstrated that EVs from L. crispatus BC5 and L. gasseri BC12 significantly enhanced the cellular adhesion of all tested lactobacilli, reaching the maximum stimulation effect on strains belonging to L. crispatus species (335% and 269% of average adhesion, respectively). At the same time, EVs reduced the adhesion of all tested pathogens, being EVs from L. gasseri BC12 the most efficient.
Conclusions
Our observations suggest for the first time that EVs released by symbiotic Lactobacillus strains favor healthy vaginal homeostasis by supporting the colonization of beneficial species and preventing pathogens attachment. This study reinforces the concept of EVs as valid postbiotics and opens the perspective of developing postbiotics from vaginal strains to maintain microbiota homeostasis and promote women’s health.
Collapse
|
13
|
Parolin C, Croatti V, Giordani B, Vitali B. Vaginal Lactobacillus Impair Candida Dimorphic Switching and Biofilm Formation. Microorganisms 2022; 10:microorganisms10102091. [PMID: 36296367 PMCID: PMC9609122 DOI: 10.3390/microorganisms10102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 02/16/2023] Open
Abstract
Lactobacillus spp. generally dominate the vaginal microbiota and prevent pathogen adhesion and overgrowth, including Candida spp., by various mechanisms. Although Candida spp. can be commensal, in certain conditions they can become pathogenic, causing vulvovaginal candidiasis. The insurgence of candidiasis is related to the expression of Candida virulence factors, including morphologic switching and biofilm formation. Germ tubes, pseudohyphae, and hyphae promote Candida tissue invasion, biofilms increase persistence and are often resistant to antifungals and host immune response. Here, we explored the inhibitory activity of vaginal Lactobacillus strains belonging to Lactobacillus crispatus, Lactobacillus gasseri, Limosilactobacillus vaginalis, and Lactiplantibacillus plantarum species towards Candida virulence factors. With the aim to investigate the interrelation between mode of growth and functionality, supernatants were collected from lactobacilli planktonic cultures and, for the first time, from adherent ones, and were evaluated towards Candida dimorphic switching and biofilm. Candida biofilms were analyzed by multiple methodologies, i.e., crystal violet staining, MTT assay, and confocal microscopy. Lactobacillus supernatants reduce Candida switching and biofilm formation. Importantly, L. crispatus supernatants showed the best profile of virulence suppression, especially when grown in adherence. These results highlight the role of such species as a hallmark of vaginal eubiosis and prompt its employment in new probiotics for women's health.
Collapse
|
14
|
Zhang Y, Yang H, Zhang C, Lin L, Yang W, Xiong G, Gao G. The impact of pelvic floor electrical stimulation on vaginal microbiota and immunity. Front Cell Infect Microbiol 2022; 12:1006576. [PMID: 36237426 PMCID: PMC9551273 DOI: 10.3389/fcimb.2022.1006576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Pelvic floor electrical stimulation (ES) is an effective treatment for pelvic floor dysfunction. However, the impact of ES on vaginal microbiota and local inflammatory response is yet poorly understood. Therefore, we designed a longitudinal study to investigate the impact of ES on vaginal microbiota and cytokines. A total of 170 participants were recruited into the study at Peking University International Hospital, Beijing, China, from December 2021 to April 2022. They were divided into two groups concerning the follow-up: long-term cohort (n = 147) following up to seven treatment sessions and short-term cohort (n = 23) following up to 7 h after a 30-min treatment. Paired vaginal discharge samples were collected from 134 individuals. Vaginal microbiota was characterized by 16S rRNA sequencing, and local cytokines concentrations were detected by the cytometric bead array method. A significant increase in the relative abundance of Lactobacillus spp. was observed after ES treatment (P < 0.001). In addition, L. crispatus (P = 0.012) and L. gasseri (P = 0.011) also increased significantly. Reduced microbial diversity was observed in the vaginal microbiota after the treatment. In the long-term cohort, a significant downregulation of IFN-γ, IL-2, IL-4, IL-10, IL-17A, and TNF-α was compared with baseline. However, the short-term cohort presented with an elevated IL-6 level at 7 h after the treatment. In conclusion, this study suggested that transvaginal electrical stimulation might help to restore and maintain a healthy vaginal microbiota dominated by Lactobacillus, reducing the risk of vaginal inflammation.
Collapse
Affiliation(s)
- Yakun Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - He Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chi Zhang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Wenlan Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Guangwu Xiong
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Guolan Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
- *Correspondence: Guolan Gao,
| |
Collapse
|
15
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|
16
|
Organic Acids Secreted by Lactobacillus spp. Isolated from Urine and Their Antimicrobial Activity against Uropathogenic Proteus mirabilis. Molecules 2022; 27:molecules27175557. [PMID: 36080323 PMCID: PMC9457960 DOI: 10.3390/molecules27175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The natural microbiota of the urinary tract includes Lactobacillus spp., which secrete molecules with antimicrobial properties and have antagonistic activity against many pathogens. This paper focuses on the antibacterial effect of Lactobacillus strains isolated from urine against clinical strains of Proteus mirabilis isolated from kidney stones and from urine with coexisting urolithiasis. The study involved analyzing the main antimicrobial molecules secreted by Lactobacillus. In order to indicate which agent had the strongest antimicrobial effect, the supernatants were made alkaline and treated with catalase and high temperature. Both treated and untreated supernatants were analyzed for their activity. Exposing uropathogens to all untreated cell-free supernatants of Lactobacillus significantly reduced their growth, and it was established that these properties were related to organic acid secretion by these strains. Using LC–MS/MS and spectrophotometric techniques, lactic, citric, and succinic acids were determined qualitatively and quantitatively. The influence of these acids on the P. mirabilis growth and biofilm formation and their influence on membrane permeability were also investigated. The results indicate that organic acids secreted by Lactobacillus strains have a high antibacterial potential and could be used as novel agents in the treatment of urinary tract infections caused by P. mirabilis.
Collapse
|