1
|
Jlali M, Hincelin C, Torrallardona D, Rougier T, Ceccantini M, Ozbek S, Preynat A, Devillard E. A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing-Finishing Pigs. Vet Sci 2024; 11:250. [PMID: 38921997 PMCID: PMC11209098 DOI: 10.3390/vetsci11060250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Two experiments were performed to evaluate the effect of a biosynthetic 6-phytase added at 500 phytase unit (FTU)/kg diet on growth performance, bone mineralization, and nutrient digestibility and retention in weaned piglets and growing-finishing pigs. Experiments were performed on 90 weaned male and female piglets with an average initial body weight (BW) at 7.7 ± 0.73 kg, 26 days of age) and 300 male and female growing pigs (initial BW: 21.0 ± 3.44 kg) for 43 and 98 days in experiments 1 and 2, respectively. In each experiment, the animals were assigned to one of three treatments according to a randomized complete block design. The treatments consisted of a positive-control (PC) diet formulated to meet nutrient requirements; a negative-control (NC) diet reduced similarly in calcium (Ca) and digestible P by 0.15 and 0.12% points in phases 1 and 2, respectively, in piglets and by 0.14, 0.11, and 0.10% points, respectively, in phases 1, 2, and 3 in growing-finishing pigs, compared with PC diet; and a NC diet supplemented with the new 6-phytase at 500 FTU/kg diet (PHY). The dietary P and Ca depletion reduced (p < 0.05) the final BW (-11.9%; -7.8%,), average daily gain (ADG, -17.8%; -10.1%), average daily feed intake (ADFI, -9.9%; -6.0%), gain-to-feed (G:F) ratio (-8.9%; -4.6%), and apparent total tract digestibility (ATTD) of P (-7.7% points; -6.7% points) in nursery piglets and growing pigs, respectively. It also decreased (p < 0.001) P and Ca retention by 6.1 and 9.4% points, respectively, in nursery pigs and ash, P, and Ca contents in metacarpal bones by 18.4, 18.4, and 16.8%, respectively, in growing pigs. Compared to animals fed the NC diet, phytase supplementation improved (p < 0.001) the final BW (+7.7%; +11.3%), ADG (+12.5%; +15.0%), G:F ratio (+8.4%; +5.8%), ATTD of Ca (+10.8% points; +7.2% points), and ATTD of P (+18.7% points; +16.6% points) in weaned piglets and growing pigs, respectively. In addition, phytase also increased (p < 0.001) P and Ca retention by 6.1 and 9.4% points, respectively, in nursery pigs and ash, P, and Ca contents in metacarpal bones by 17.7, 15.0, and 15.2%, respectively, in growing pigs. The final BW, ADG, G:F ratio, and bone traits in animals fed the NC diet supplemented with phytase were comparable to animals fed the PC diet. This finding indicates the ability of this novel biosynthetic phytase to restore performance and bone mineralization by improving the availability of P and Ca in piglets and growing pigs fed P- and Ca-deficient diets.
Collapse
Affiliation(s)
- Maamer Jlali
- Adisseo France S.A.S., European Laboratory of Innovation, Science and Expertise, 69190 Saint-Fons, Lyon, France; (T.R.); (S.O.); (E.D.)
| | | | - David Torrallardona
- Institut de Recerca i Tecnologia Agroalimentàries, Animal Nutrition, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Tarragona, Spain;
| | - Tania Rougier
- Adisseo France S.A.S., European Laboratory of Innovation, Science and Expertise, 69190 Saint-Fons, Lyon, France; (T.R.); (S.O.); (E.D.)
| | | | - Sarper Ozbek
- Adisseo France S.A.S., European Laboratory of Innovation, Science and Expertise, 69190 Saint-Fons, Lyon, France; (T.R.); (S.O.); (E.D.)
| | - Aurélie Preynat
- Adisseo France S.A.S., 92160 Antony, France; (C.H.); (M.C.); (A.P.)
| | - Estelle Devillard
- Adisseo France S.A.S., European Laboratory of Innovation, Science and Expertise, 69190 Saint-Fons, Lyon, France; (T.R.); (S.O.); (E.D.)
| |
Collapse
|
2
|
Ovseychik EA, Klein OI, Gessler NN, Deryabina YI, Lukashenko VS, Isakova EP. The Efficacy of Encapsulated Phytase Based on Recombinant Yarrowia lipolytica on Quails' Zootechnic Features and Phosphorus Assimilation. Vet Sci 2024; 11:91. [PMID: 38393109 PMCID: PMC10891838 DOI: 10.3390/vetsci11020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we used the Manchurian golden breed of quails. We assessed the efficacy of the food additives of the phytase from Obesumbacterium proteus encapsulated in the recombinant Yarrowia lipolytica yeast, which was supplied at a concentration of 500 phytase activity units per kg of the feed. One hundred fifty one-day-old quails were distributed into six treatment groups. The results showed that adding the O. proteus encapsulated phytase to the quails' diets improved live weight, body weight gain, and feed conversion compared to those in the control groups and the groups using a commercial phytase from Aspergillus ficuum. The results obtained during the experiments indicate a high degree of assimilation of phytate-containing feeds if the encapsulated phytase was fed by the quails compared to that in the other groups. We can conclude that the class D encapsulated phytase is an expedient additive to the diets possessing better kinetic features compared to the PhyA and PhyC classes phytases when it acts inside the quail's chyme.
Collapse
Affiliation(s)
- Ekanerina A. Ovseychik
- Federal State Budget Scientific Institution Federal Scientific Center “Russian Research and Technological Poultry Institute” of Russian Academy of Sciences, Sergiev Posad 141311, Russia; (E.A.O.); (V.S.L.)
| | - Olga I. Klein
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (O.I.K.); (N.N.G.); (Y.I.D.)
| | - Natalia N. Gessler
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (O.I.K.); (N.N.G.); (Y.I.D.)
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (O.I.K.); (N.N.G.); (Y.I.D.)
| | - Valery S. Lukashenko
- Federal State Budget Scientific Institution Federal Scientific Center “Russian Research and Technological Poultry Institute” of Russian Academy of Sciences, Sergiev Posad 141311, Russia; (E.A.O.); (V.S.L.)
| | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (O.I.K.); (N.N.G.); (Y.I.D.)
| |
Collapse
|
3
|
Singh B, Pragya, Tiwari SK, Singh D, Kumar S, Malik V. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 2023; 40:22. [PMID: 38008864 DOI: 10.1007/s11274-023-03783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/28/2023]
Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, 123029, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, Shobhit Institute of Engineering and Technology (Deemed to Be University), Modipurum, Meerut, 250110, UP, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
4
|
Joudaki H, Aria N, Moravej R, Rezaei Yazdi M, Emami-Karvani Z, Hamblin MR. Microbial Phytases: Properties and Applications in the Food Industry. Curr Microbiol 2023; 80:374. [PMID: 37847302 PMCID: PMC10581959 DOI: 10.1007/s00284-023-03471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Microbial phytases are enzymes that break down phytic acid, an anti-nutritional compound found in plant-based foods. These enzymes which are derived from bacteria and fungi have diverse properties and can function under different pH and temperature conditions. Their ability to convert phytic acid into inositol and inorganic phosphate makes them valuable in food processing. The application of microbial phytases in the food industry has several advantages. Firstly, adding them to animal feedstuff improves phosphorus availability, leading to improved nutrient utilization and growth in animals. This also reduces environmental pollution by phosphorus from animal waste. Secondly, microbial phytases enhance mineral bioavailability and nutrient assimilation in plant-based food products, counteracting the negative effects of phytic acid on human health. They can also improve the taste and functional properties of food and release bioactive compounds that have beneficial health effects. To effectively use microbial phytases in the food industry, factors like enzyme production, purification, and immobilization techniques are important. Genetic engineering and protein engineering have enabled the development of phytases with improved properties such as enhanced stability, substrate specificity, and resistance to degradation. This review provides an overview of the properties and function of phytases, the microbial strains that produce them, and their industrial applications, focusing on new approaches.
Collapse
Affiliation(s)
- Hanane Joudaki
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Negar Aria
- Department of Microbiology, School of Biology, Collect of Science, University of Tehran, Tehran, Iran
| | - Roya Moravej
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Filippovich SY, Isakova EP, Gessler NN, Deryabina YI. Advances in immobilization of phytases and their application. BIORESOURCE TECHNOLOGY 2023; 379:129030. [PMID: 37037335 DOI: 10.1016/j.biortech.2023.129030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The review describes the advances in the phytase immobilization for the past decade and their biotechnological applications. Different approaches for phytase immobilization are described including the process using organic and inorganic matrices and microbial cells, as well as nanostructures of various nature. Moreover, the immobilization of phytase-producing microbial cells and the use of cross-linked phytase aggregates have been under consideration. A detailed classification of various carriers for immobilization of phytases and the possibility of their applications are presented. A particular attention is drawn to a breakthrough approach of biotechnological significance to the design of microencapsulation of bacterial phytase from Obesumbacterium proteus in the recombinant extremophile of Yarrowia lipolytica.
Collapse
Affiliation(s)
- Svetlana Yu Filippovich
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Elena P Isakova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Natalia N Gessler
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Yulia I Deryabina
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
6
|
Dikbaş N, Parlakova Karagöz F, Uçar S, Demir Y. Ornamental cabbage (Brassica oleracea var. acephala) responses to phytase enzyme purified from Lactobacillus coryniformis application. Biotechnol Appl Biochem 2023. [PMID: 36779503 DOI: 10.1002/bab.2449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023]
Abstract
In order to increase the quality and yield of ornamental plants, especially potted ornamental plants, it is necessary to enrich the physical properties of the growing medium and to ensure the continuity of the growing medium. In order to achieve this, organic substances that create a serious cost in ornamental plant cultivation are added to the growing medium. This study was planned to assess the role of inoculation of different levels in the seeds and soaking times of purified phytase, on the plant growth and ornamental plant decorative values in ornamental cabbage plants under nutrient limiting condition in greenhouse. Different doses (E0 : 0 EU, E1 : 5 EU, E2 : 10 EU), soaking times (W15 : 15 min, W30 : 30 min, W60 : 60 min), and their combinations (W15 + E0 , W15 + E1 , W15 + E2 , W30 + E0 , W30 + E1 , W30 + E2 , W60 + E0 , W60 + E1 , W60 + E2 ) of phytase enzyme purified and isolated from the Lactobacillus coryniformis were applied to ornamental cabbage seeds, and they were sown in plug trays filled with appropriate growing medium. Seedlings were planted in plastic pots during their period when the seedlings had four to five true leaves. Treatments of phytase enzyme purified and isolated from the microorganism generally improved the observed parameters. The application of, especially, the highest level of phytase enzyme doses increased the plant height, main stem height, and stem diameter of ornamental cabbage as compared to control (E0 treatment: distilled water). While the highest number of leaves per plant was obtained at E1 and E2 application doses and W30 and W60 soaking times; the highest stem diameter was obtained at E2 application doses and W30 and W60 soaking times. The present study clarified that the purified phytase enzyme can increase ornamental cabbage quality at the appropriate concentration and soaking time and is a promising biotechnology material for agricultural applications, and especially in different ornamental plant species.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural Faculty, Ataturk University, Erzurum, Turkey
| | | | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and Technology, Sivas Science and Technology University, Sivas, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
7
|
Naghdi E, Moosavi-Nejad Z, Gholamhossein Goudarzi B, Soudi MR. Phytate-Induced Dose-Response Auto-Activation of Enzyme in Commercial Recombinant Phytase From Escherichia coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3315. [PMID: 36811107 PMCID: PMC9938928 DOI: 10.30498/ijb.2022.334455.3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/07/2022] [Indexed: 02/24/2023]
Abstract
Background Microbial phytase is one of the most widely used enzymes in food industries like cattle, poultry, and aquaculture food. Therefore, understanding the kinetic properties of the enzyme is very important to evaluate and predict its behavior in the digestive system of livestock. Working on phytase is one of the most challenging experiments because of some problems, including free inorganic phosphate (FIP) impurity in phytate (substrate) and interference reaction of the reagent with both phosphates (product and phytate impurity). Objective In the present study, FIP impurity of phytate was removed, and then it was shown that the substrate (phytate) has a dual role in enzyme kinetics: substrate and activator. Material and Methods phytate impurity was decreased by two-step recrystallization prior to the enzyme assay. The impurity removal was estimated by the ISO30024:2009 method and confirmed by Fourier-transform infrared (FTIR) spectroscopy. The kinetic behavior of phytase activity was evaluated using the purified phytate as substrate by non-Michaelis-Menten analysis, including Eadie-Hofstee, Clearance, and Hill plots. The possibility of an allosteric site on phytase was assessed by molecular docking. Results The results showed a 97.2% decrease in FIP due to recrystallization. The phytase saturation curve had a sigmoidal appearance, and Lineweaver-Burk plot with a negative y-intercept indicated the positive homotropic effect of the substrate on the enzyme activity. A right-side concavity of Eadie-Hofstee plot confirmed it. Hill coefficient was calculated to be 2.26. Molecular docking also showed that Escherichia coli phytase molecule has another binding site for phytate very close to the active site, called "allosteric site". Conclusions The observations strongly propose the existence of an intrinsic molecular mechanism in Escherichia coli phytase molecules to be promoted for more activity by its substrate, phytate (positive homotropic allosteric effect). In silico analysis showed that phytate binding to the allosteric site caused new substrate-mediated inter-domain interactions, which seems to lead to a more active conformation of phytase. Our results provide a strong basis for animal feed development strategies, especially in the case of poultry food and supplements, regarding a short food passage time in their gastrointestinal tract and variable concentration of phytate along with it. Additionally, the results strengthen our understanding of phytase auto-activation as well as allosteric regulation of monomeric proteins in general.
Collapse
Affiliation(s)
- Elmira Naghdi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Gordeeva TL, Borshchevskaya LN, Sineoky SP. Biochemical characterisation of glycosylated and deglycosylated forms of phytase from Cronobacter turicensis expressed in Pichia pastoris. Enzyme Microb Technol 2023; 162:110136. [DOI: 10.1016/j.enzmictec.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
|
9
|
Rizwanuddin S, Kumar V, Singh P, Naik B, Mishra S, Chauhan M, Saris PEJ, Verma A, Kumar V. Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Front Microbiol 2023; 14:1127249. [PMID: 37113239 PMCID: PMC10128089 DOI: 10.3389/fmicb.2023.1127249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing demand for food has increased dependence on chemical fertilizers that promote rapid growth and yield as well as produce toxicity and negatively affect nutritional value. Therefore, researchers are focusing on alternatives that are safe for consumption, non-toxic, cost-effective production process, and high yielding, and that require readily available substrates for mass production. The potential industrial applications of microbial enzymes have grown significantly and are still rising in the 21st century to fulfill the needs of a population that is expanding quickly and to deal with the depletion of natural resources. Due to the high demand for such enzymes, phytases have undergone extensive research to lower the amount of phytate in human food and animal feed. They constitute efficient enzymatic groups that can solubilize phytate and thus provide plants with an enriched environment. Phytases can be extracted from a variety of sources such as plants, animals, and microorganisms. Compared to plant and animal-based phytases, microbial phytases have been identified as competent, stable, and promising bioinoculants. Many reports suggest that microbial phytase can undergo mass production procedures with the use of readily available substrates. Phytases neither involve the use of any toxic chemicals during the extraction nor release any such chemicals; thus, they qualify as bioinoculants and support soil sustainability. In addition, phytase genes are now inserted into new plants/crops to enhance transgenic plants reducing the need for supplemental inorganic phosphates and phosphate accumulation in the environment. The current review covers the significance of phytase in the agriculture system, emphasizing its source, action mechanism, and vast applications.
Collapse
Affiliation(s)
- Sheikh Rizwanuddin
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Bindu Naik
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- *Correspondence: Bindu Naik,
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Per Erik Joakim Saris,
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
10
|
Isakova EP, Gessler NN, Deryabina YI. Comparative Assay of Phytase Activity in Yarrowia lipolytica Strains Transformed with the Neutrophilic Phytase Genome from Obesumbacterium proteus in Batch Cultivation. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Characterisation of a soil MINPP phytase with remarkable long-term stability and activity from Acinetobacter sp. PLoS One 2022; 17:e0272015. [DOI: 10.1371/journal.pone.0272015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2–8.5 with maxima at 3, 4.5–5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.
Collapse
|
12
|
Lopes M, Coutinho T, Farinas C. Modification of zeolite with metallic ions improves the immobilization of phytase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Lopes MM, Coutinho TC, Malafatti JOD, Paris EC, Sousa CPD, Farinas CS. Immobilization of phytase on zeolite modified with iron(II) for use in the animal feed and food industry sectors. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Gordeeva TL, Borshchevskaya LN, Kalinina AN, Bulushova NV, Syneoky SP, Voronin SP, Kashirskaya MD. New Recombinant Phytase from Kosakoniasacchari: Characteristics and Biotechnological Potential. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820070042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sharma A, Ahluwalia O, Tripathi AD, Singh G, Arya SK. Phytases and their pharmaceutical applications: Mini-review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Serdyuk EG, Isakova EP, Gessler NN, Trubnikova EV, Antipov AN, Deryabina YI. Activity of Neutral Phytase from Obesumbacterium proteus in Recombinant Strains of Yarrowia lipolytica under Cultivation on Low-Grade Vegetable Substrate. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Dou TY, Chen J, Qian XK, Li K, Ge GB. Biotransformation of Glycoginsenosides to Intermediate Products and Aglycones using a Hemicellulosome Produced by Cellulosimicrobium cellulan. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|