1
|
D PM, Chawla R, Dutta PK. Physicochemical and biological evaluation of 'click' synthesized vinyl epoxide-chitosan film for active food packaging. Int J Biol Macromol 2024; 282:136816. [PMID: 39447800 DOI: 10.1016/j.ijbiomac.2024.136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Chitosan (Cs) being a natural biopolymer serves as an excellent template to construct active packaging materials for achieving sustainable development. In this study, Cs was chemically modified via epoxide ring opening click reaction using vinyl epoxide to obtain a novel chitosan vinyl epoxide (Cs-VE) derivative with hydroxyl and olefinic functional groups. The Cs-VE transparent film was fabricated through the eco-friendly solution casting technique. A meticulous investigation into the chemical structure and physicochemical properties of the synthesized films was conducted using FT-IR, 1H NMR and XRD analyses. The thermal stability and homogeneity of the film were verified by thermogram and FE-SEM images respectively. Improved mechanical properties (tensile strength of 24.64 MPa and 12.08 % elongation at break) and excellent UV-light blocking ability (9.3 % transmittance at 350 nm and 22.15 % transparency at 600 nm) were observed. Also, important parameters such as water vapor permeability (WVP), swelling degree, water solubility and UV-barrier properties were found to be adequate for food packaging application. Similarly, enhanced antioxidant activity with 27.2 % and 73.6 % radical scavenging against DPPH and ABTS radicals respectively was observed for the synthesized Cs-VE film. The film showed antimicrobial activity against both bacteria and fungi. These results along with food packaging studies on Grewia asiatica fruit established the developed Cs-VE film as a suitable candidate for active food packaging application.
Collapse
Affiliation(s)
- Pal Manisha D
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
2
|
Chandrasekaran M, Paramasivan M. Chitosan derivatives act as a bio-stimulants in plants: A review. Int J Biol Macromol 2024; 271:132720. [PMID: 38845257 DOI: 10.1016/j.ijbiomac.2024.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by β-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, 209, Neundong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | | |
Collapse
|
3
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024:10.1007/s11030-024-10810-2. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
4
|
Saied M, Ward A, Hamieda SF. Effect of apricot kernel seed extract on biophysical properties of chitosan film for packaging applications. Sci Rep 2024; 14:3430. [PMID: 38341481 PMCID: PMC10858884 DOI: 10.1038/s41598-024-53397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a natural biodegradable biopolymer that has drawbacks in mechanical and antibacterial properties, limiting its usage in biological and medicinal fields. Chitosan is combined with other naturally occurring substances possessing biological antibacterial qualities in order to broaden its application. Ethanolic apricot kernel seed extract was prepared, analyzed, and incorporated into chitosan film with different concentrations (0.25, 0.5, and 0.75 wt%). Furthermore, the effect of AKSE and γ-radiation (20 Gy and 20 kGy) on the physical properties of the film was studied. The prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), which revealed that AKSE did not cause any change in the molecular structure, whereas the γ-irradiation dose caused a decrease in the peak intensity of all concentrations except 0.75 wt%, which was the most resistant. In addition, their dielectric, optical, and antimicrobial properties were studied. Also, AKSE-enhanced optical qualities, allowed them to fully block light transmission at wavelengths of 450-600 nm. The dielectric properties, i.e., permittivity (ε'), dielectric loss (ε''), and electrical conductivity (σ), increased with increasing AKSE concentration and film irradiation. The antimicrobial studies revealed that the antimicrobial activity against Escherichia coli and Canodida albicans increased with AKSE incorporation.
Collapse
Affiliation(s)
- Mona Saied
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt.
| | - Azza Ward
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| | - Shimaa Farag Hamieda
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Flórez M, Cazón P, Vázquez M. Characterization of active films of chitosan containing nettle Urtica dioica L. extract: Spectral and water properties, microstructure, and antioxidant activity. Int J Biol Macromol 2023; 253:127318. [PMID: 37813218 DOI: 10.1016/j.ijbiomac.2023.127318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Chitosan films enriched with aqueous nettle extract (Urtica dioica L.) were evaluated by measuring their solubility, equilibrium moisture, water vapor permeability, spectral and antioxidant properties, and microstructure. Nettle extract showed a significant effect on the analyzed film properties. The addition of nettle extract manifested a sharp decrease in water vapor permeability, decreasing from 5.64 · 10-11 to 2.22 · 10-11 g/m·s·Pa. The chitosan- nettle extract films exhibited a high free-radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Incorporation of nettle extract into the chitosan matrix was successfully carried out to obtain antioxidant films. The results obtained showed that the incorporation of nettle extract allowed obtaining chitosan films with antioxidant properties, including a total phenolic content up to 1.57 mg GAE/g film. Furthermore, the films with nettle extract boast an UV shielding ability with transmittance values close to zero in the UV region and a water solubility up to 1 %. The inherent biodegradability is also a strong advantage of the developed active films.
Collapse
Affiliation(s)
- María Flórez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
6
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
7
|
Yin W, Yan R, Zhou X, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Wang J, Jin Z, Qiu C. Preparation of robust, water-resistant, antibacterial, and antioxidant chitosan-based films by incorporation of cinnamaldehyde-tannin acid-zinc acetate nanoparticles. Food Chem 2023; 419:136004. [PMID: 37054511 DOI: 10.1016/j.foodchem.2023.136004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 03/19/2023] [Indexed: 04/15/2023]
Abstract
Chitosan (CS) films have poor mechanical property, low water-resistance and limited antimicrobial activity, which hinder their application in food preservation industry. Cinnamaldehyde-tannic acid-zinc acetate nanoparticles (CTZA NPs) assembled from edible medicinal plant extracts were successfully incorporated into CS films to solve these issues. The tensile strength and water contact angle of the composite films increased about 5.25-fold and 17.55°. The addition of CTZA NPs reduced the water sensitivity of CS films, which could undergo appreciable stretching in water without breaking. Furthermore, CTZA NPs significantly enhanced the UV adsorption, antibacterial, and antioxidant properties of the films, while reduced their water vapor permeability. Moreover, it was possible to print inks onto the films because the presence of the hydrophobic CTZA NPs facilitated the deposition of carbon powder onto their surfaces. The films with great antibacterial and antioxidant activities can be applied for food packaging application.
Collapse
Affiliation(s)
- Wenqi Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruyu Yan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyi Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Luo X, Peng Y, Qin Z, Tang W, Duns GJ, Dessie W, He N, Tan Y. Chitosan-based packaging films with an integrated antimicrobial peptide: Characterization, in vitro release and application to fresh pork preservation. Int J Biol Macromol 2023; 231:123209. [PMID: 36639078 DOI: 10.1016/j.ijbiomac.2023.123209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Chitosan (CS) films were developed incorporating peptide HX-12C. The films were studied to determine their microstructures, physical properties, release properties of peptide HX-12C and functional properties. The results indicated that there may be hydrogen bonding interactions between CS and peptide HX-12C, thereby creating a homogeneous internal microstructure and lower crystallinity (10.8-12.8 %). Compared with CS film, CS-HX-12C films displayed lower light transmission, MC (20.8-19.9 %), WVP (8.82-8.59 × 10-11·g·m-1·s-1·Pa-1), OTR (0.015-0.037 cc/(m2.day)) and higher WS (15.7-32.4 %) values. Moreover, controlled-release experiments showed that pH, ionic strength and temperature could all significantly affect the release of peptide HX-12C from the films. Finally, the increase of pH value and TVC and lipid oxidation of fresh pork were delayed due to the treatment with CS-2%HX-12C film. However, incorporating peptide HX-12C into CS films did not improve the mechanical properties of the films and their effects against protein oxidation. Our results suggest that the CS-based antimicrobial packaging films integrated with peptide HX-12C exhibit the potential for fresh pork preservation.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Yafang Peng
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China.
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Gregory J Duns
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
9
|
Vesel A. Deposition of Chitosan on Plasma-Treated Polymers-A Review. Polymers (Basel) 2023; 15:1109. [PMID: 36904353 PMCID: PMC10007447 DOI: 10.3390/polym15051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.
Collapse
Affiliation(s)
- Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Hiremani VD, Goudar N, Khanapure S, Gasti T, Eelager MP, Narasagoudr SS, Masti SP, Chougale RB. Physicochemical and antimicrobial properties of Phyllanthus reticulatus fruit extract doped chitosan/poly (vinyl alcohol) blend films for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Vinogradov II, Eremin PS, Poddubikov AV, Gilmutdinova IR, Nechaev AN. A Bioplastic Material Based on Ion-Track Wound Dressings and Chitosan Nano-Scaffold. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822090101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Egorov AR, Kurasova MN, Khubiev O, Bogdanov NA, Tskhovrebov AG, Kirichuk AA, Khrustalev VN, Rubanik VV, Rubanik VV, Kritchenkov AS. Ciprofloxacin chitosan conjugate: combined antibacterial effect and low toxicity. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
Novikova II, Popova EV, Krasnobaeva IL, Kovalenko NM. The Use of Chitosan Salicylate to Increase the Biological Efficiency of Vitaplan against Cochliobolus sativus. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Li J, Fu J, Tian X, Hua T, Poon T, Koo M, Chan W. Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydr Polym 2022; 280:119031. [PMID: 35027133 DOI: 10.1016/j.carbpol.2021.119031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
We selected eight kinds of chitosan fibers to characterize and analyze their composition, surface morphology, and mechanical properties. Crucially, we investigated their antibacterial activity against Escherichia coli, Staphylococcus aureus and Candida albicans and the dependence on the molecular weight (Mw) and the degree of deacetylation (DD). On that basis, the relationship between antibacterial activity and Mw and DD can be established. Finally, the antibacterial mechanism of chitosan fiber was obtained. The results show that the inhibition rate of samples I, K, L, and M against Staphylococcus aureus first increased and then decreased with the increase of Mw, and their bactericidal activity against Escherichia coli decreased with the increase of Mw when the DD was similar. This study provides an effective strategy for characterizing the chitosan fiber and the resultant relationship between antibacterial property and structural parameters that may benefit the enhancement of antibacterial activity and application in antibacterial textiles.
Collapse
Affiliation(s)
- Jianhui Li
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jimin Fu
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Xiao Tian
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Tao Hua
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Tszyin Poon
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Mingkin Koo
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wingming Chan
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| |
Collapse
|
16
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 2022; 277:118876. [PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - A A Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and vit. Medicine, Qassim University, 51452 Burydah, Saudi Arabia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
17
|
Vinogradov II, Petrik L, Serpionov GV, Nechaev AN. Composite Membrane Based on Track-Etched Membrane and Chitosan Nanoscaffold. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621060093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Muntean D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics 2021; 13:pharmaceutics13101639. [PMID: 34683932 PMCID: PMC8541518 DOI: 10.3390/pharmaceutics13101639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Considering the challenge created by the development of bacterial and fungal strains resistant to multiple therapeutic variants, new molecules and materials with specific properties against these microorganisms can be synthesized, like those synthesized from biopolymers such as chitosan with improved antimicrobial activities. Antimicrobial activities of seven obtained materials were tested on four reference strains belonging to American Type Culture Collection. The best antimicrobial activity was obtained by functionalization by impregnation of chitosan with quaternary ammonium salts, followed by that obtained by functionalization of chitosan with phosphonium. The lowest antibacterial and antifungal effects were expressed by Ch-THIO and Ch-MBT, but new materials obtained with these extractants may be precursors with a significant role in the direct control of active molecules, such as cell growth factors or cell signaling molecules.
Collapse
Affiliation(s)
- Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Daniel Duda-Seiman
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Delia Muntean
- Multidisciplinary Research Center on Antimicrobial Resistance, Department of Microbiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
19
|
Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1986700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - F. Bedia Erim
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
20
|
Bi J, Tian C, Zhang GL, Hao H, Hou HM. Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chem 2021; 365:130534. [PMID: 34256224 DOI: 10.1016/j.foodchem.2021.130534] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Active food packaging materials containing procyanidins (PC) exhibits outstanding antimicrobial activity, but PC is easy to be hydrolyzed by acid. A novel water-soluble chitosan (CS)-based copolymer was prepared to be used as a carrier to provide a pH-stable environment for loading PC. CS was copolymerized with polyvinyl alcohol (PVA) via a coupling reagent-mediated approach. The CS-graft-PVA film exhibited a desirable PC encapsulation efficiency of over 95% and excellent long-term release sustainability, which was better than the conventional CS and CS-blend-PVA films. Moreover, CS-graft-PVA film had satisfactory mechanical properties and barrier properties, as well possessed a desirable antibacterial activity and biofilm inhibition against foodborne pathogenic microbes and spoilage bacteria. The film was also applied in the salmon muscle perseveration and showed a potential ability to prevent microorganism contamination and texture deterioration in 10 days. These results suggested that the CS-graft-PVA film has an excellent promise for future food packaging applications.
Collapse
Affiliation(s)
- Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| | - Chuan Tian
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
21
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
22
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
23
|
Multiple chiroptical switches and logic circuit based on salicyl‒ imine‒chitosan hydrogel. Carbohydr Polym 2021; 257:117534. [PMID: 33541623 DOI: 10.1016/j.carbpol.2020.117534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
A chitosan-based chiral hydrogel was fabricated by grafting achiral salicylaldehyde (SA) on chitosan chains, followed by supramolecular assembly (CS-SA hydrogel hereafter). The structures and properties of the CS-SA hydrogel were characterized and investigated. The results indicated that the swelling ability of the CS-SA hydrogel depended on the medium pH and crosslinking degree. Circular dichroism measurements revealed that the chiral information of the chitosan was successfully transcribed to the achiral salicylic chromophores through imine bonds. Chiroptical switches based on acid-base responses of the imine bond and the OH fragment of SA and the swelling properties of the CS-SA hydrogel were fabricated, which is first reported for a chitosan-based hydrogel. In addition, a gel film showed good fatigue resistance under external stimuli. IMPLICATION, INHIBIT, and PASS logic gates and a logic circuit based on the chiroptical switches were successfully designed. This study suggests a new method of constructing biobased chiral functional materials.
Collapse
|
24
|
Development of Chitosan/Peptide Films: Physical, Antibacterial and Antioxidant Properties. COATINGS 2020. [DOI: 10.3390/coatings10121193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chitosan/peptide films were prepared by incorporating peptides (0.4%, w/v) from soy, corn and caseins into chitosan films. The presence of peptides significantly affected the physical, antibacterial and antioxidative properties of chitosan films. Among these films, those containing corn peptide showed the best water vapor barrier properties, and the tensile strength and elongation at break increased to 24.80 Mpa and 23.94%, respectively. Characterization of surface hydrophobicity and thermal stability suggested the strongest intermolecular interactions between corn peptides and chitosan. Moreover, films containing casein peptides showed the highest antibacterial activity and radical scavenging activity. The DPPH scavenging rate of films containing casein peptides reached 46.11%, and ABTS scavenging rate reached 66.79%. These results indicate the chitosan/peptide films may be promising food packaging materials.
Collapse
|
25
|
Zhgun AA, Avdanina DA, Shagdarova BT, Troyan EV, Nuraeva GK, Potapov MP, Il’ina AV, Shitov MV, Varlamov VP. Search for Efficient Chitosan-Based Fungicides to Protect the 15th‒16th Centuries Tempera Painting in Exhibits from the State Tretyakov Gallery. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
27
|
Shilova SV, Mirgaleev GM, Tret’yakova AY, Barabanov VP. Polyelectrolyte Complexes of Chitosan with Sodium Carboxymethyl Cellulose in Water–Alcohol Media and Microcapsules Based on Them. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20050156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Bajić M, Oberlintner A, Kõrge K, Likozar B, Novak U. Formulation of active food packaging by design: Linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. Int J Biol Macromol 2020; 160:971-978. [DOI: 10.1016/j.ijbiomac.2020.05.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|
29
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
30
|
Qin Y, Li P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int J Mol Sci 2020; 21:E499. [PMID: 31941068 PMCID: PMC7013974 DOI: 10.3390/ijms21020499] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
As a natural polysaccharide, chitosan possesses good biocompatibility, biodegradability and biosafety. Its hydroxyl and amino groups make it an ideal carrier material in the construction of polymer-drug conjugates. In recent years, various synthetic strategies have been used to couple chitosan with active substances to obtain conjugates with diverse structures and unique functions. In particular, chitosan conjugates with antimicrobial activity have shown great application prospects in the fields of medicine, food, and agriculture in recent years. Hence, we will place substantial emphasis on the synthetic approaches for preparing chitosan conjugates and their antimicrobial applications, which are not well summarized. Meanwhile, the challenges, limitations, and prospects of antimicrobial chitosan conjugates are described and discussed.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
31
|
Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties. Carbohydr Polym 2019; 226:115311. [DOI: 10.1016/j.carbpol.2019.115311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
32
|
Bajić M, Ročnik T, Oberlintner A, Scognamiglio F, Novak U, Likozar B. Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100365] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|