1
|
Novikov A, Sayfutdinova A, Botchkova E, Kopitsyn D, Fakhrullin R. Antibiotic Susceptibility Testing with Raman Biosensing. Antibiotics (Basel) 2022; 11:antibiotics11121812. [PMID: 36551469 PMCID: PMC9774239 DOI: 10.3390/antibiotics11121812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics guard us against bacterial infections and are among the most commonly used medicines. The immediate consequence of their large-scale production and prescription is the development of antibiotic resistance. Therefore, rapid detection of antibiotic susceptibility is required for efficient antimicrobial therapy. One of the promising methods for rapid antibiotic susceptibility testing is Raman spectroscopy. Raman spectroscopy combines fast and contactless acquisition of spectra with good selectivity towards bacterial cells. The antibiotic-induced changes in bacterial cell physiology are detected as distinct features in Raman spectra and can be associated with antibiotic susceptibility. Therefore, the Raman-based approach may be beneficial in designing therapy against multidrug-resistant infections. The surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RRS) additionally provide excellent sensitivity. In this review, we present an analysis of the Raman spectroscopy-based optical biosensing approaches aimed at antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Andrei Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
- Correspondence: (A.N.); (R.F.)
| | - Adeliya Sayfutdinova
- Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
| | - Ekaterina Botchkova
- Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia
- Correspondence: (A.N.); (R.F.)
| |
Collapse
|
2
|
Gannesen AV, Ziganshin RH, Zdorovenko EL, Klimko AI, Ianutsevich EA, Danilova OA, Tereshina VM, Gorbachevskii MV, Ovcharova MA, Nevolina ED, Martyanov SV, Shashkov AS, Dmitrenok AS, Novikov AA, Zhurina MV, Botchkova EA, Toukach PV, Plakunov VK. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin. Front Microbiol 2022; 13:1003942. [PMID: 36204611 PMCID: PMC9530943 DOI: 10.3389/fmicb.2022.1003942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena I. Klimko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Danilova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | | | - Maria A. Ovcharova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina D. Nevolina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Martyanov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei A. Novikov
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Marina V. Zhurina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Philipp V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir K. Plakunov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. NANOSCALE ADVANCES 2021; 3:2679-2698. [PMID: 36134176 PMCID: PMC9418567 DOI: 10.1039/d0na00961j] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique optical properties. By leveraging the versatile optical properties of different gold nanostructures, the performance of biosensing and biomedical imaging can be dramatically improved in terms of their sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs: surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the fabrication methods and optical properties of different types of AuNPs, highlight the emerging applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of implementing these techniques in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University California 94305 USA
| | - Nasrin Razmi
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Omer Nur
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Magnus Willander
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University California 94305 USA
| |
Collapse
|
4
|
Gorbachevskii MV, Filatova SV, Filimonova AV, Kopitsyn DS, Panchenko AA, Vinokurov VA, Novikov AA. Detection of bacterial colonization by the spectral changes of surface-enhanced Raman reporters. Biochem Biophys Res Commun 2021; 546:145-149. [PMID: 33582557 DOI: 10.1016/j.bbrc.2021.01.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
In times of widespread multiple antibiotic resistance, the bacterial colonization of crucial medical surfaces should be detected as fast as possible. In this work, we present the non-destructive SERS method for the detection of bacterial colonization. SERS is an excellent tool for the monitoring of suitable substances in low concentrations. The SERS substrate was prepared by the aggregation of citrate-stabilized gold nanoparticles and the adsorption of the reporters (crystal violet, thiamine, and adenine). We have tested the substrate for the detection of clinically relevant S. aureus and P. aeruginosa bacteria. The SERS spectra before and after the substrate incubation revealed the degradation of the reporter by the growing bacteria. The growth of P. aeruginosa was detected using the substrates with preadsorbed crystal violet or adenine. The suitable reporter for the detection of S. aureus remains to be discovered. The selection of the reporters resistant to exposure but easily degraded by bacteria will open the way for the in situ monitoring of bacterial colonization, thus complementing the arsenal of methods in the battle against hospital infections.
Collapse
|