1
|
Antibacterial effect of singlet oxygen depending on bacteria surface charge. Photodiagnosis Photodyn Ther 2022; 39:102975. [PMID: 35724937 DOI: 10.1016/j.pdpdt.2022.102975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Here, we investigated the bactericidal effects of two types of photoinduced reactive oxygen species (ROS), superoxide anion and singlet oxygen, on bacteria with distinct surface charges. We fabricated photofunctional polymer films (PFPFs) capable of generating both types of ROS, and they were subjected to photodynamic inactivation tests for 12 various strains of Acinetobacter baumannii. The results showed that the type I ROS (superoxide anion) was significantly dependent on the surface charge of the bacteria owing to charge-charge repulsion, while the type II ROS (singlet oxygen) was independent of the surface charge of the bacteria. These results would be significant in enhancing treatment efficiency in the clinical field.
Collapse
|
2
|
Mokrzyński K, Krzysztyńska-Kuleta O, Zawrotniak M, Sarna M, Sarna T. Fine Particulate Matter-Induced Oxidative Stress Mediated by UVA-Visible Light Leads to Keratinocyte Damage. Int J Mol Sci 2021; 22:10645. [PMID: 34638985 PMCID: PMC8509012 DOI: 10.3390/ijms221910645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The human skin is exposed to various environmental factors including solar radiation and ambient air pollutants. Although, due to its physical and biological properties, the skin efficiently protects the body against the harm of environmental factors, their excessive levels and possible synergistic action may lead to harmful effects. Among particulate matter present in ambient air pollutants, PM2.5 is of particular importance for it can penetrate both disrupted and intact skin, causing adverse effects to skin tissue. Although certain components of PM2.5 can exhibit photochemical activity, only a limited amount of data regarding the interaction of PM2.5 with light and its effect on skin tissue are available. This study focused on light-induced toxicity in cultured human keratinocytes, which was mediated by PM2.5 obtained in different seasons. Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM) were employed to determine sizes of the particles. The ability of PM2.5 to photogenerate free radicals and singlet oxygen was studied using EPR spin-trapping and time-resolved singlet oxygen phosphorescence, respectively. Solar simulator with selected filters was used as light source for cell treatment to model environmental lightning conditions. Cytotoxicity of photoexcited PM2.5 was analyzed using MTT assay, PI staining and flow cytometry, and the apoptotic pathway was further examined using Caspase-3/7 assay and RT-PCR. Iodometric assay and JC-10 assay were used to investigate damage to cell lipids and mitochondria. Light-excited PM2.5 were found to generate free radicals and singlet oxygen in season-dependent manner. HaCaT cells containing PM2.5 and irradiated with UV-Vis exhibited oxidative stress features-increased peroxidation of intracellular lipids, decrease of mitochondrial membrane potential, enhanced expression of oxidative stress related genes and apoptotic cell death. The data indicate that sunlight can significantly increase PM2.5-mediated toxicity in skin cells.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Olga Krzysztyńska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland;
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| |
Collapse
|
3
|
Hricovíni M, Asher J, Hricovíni M. Photochemical anti- syn isomerization around the -N-N[double bond, length as m-dash] bond in heterocyclic imines. RSC Adv 2020; 10:5540-5550. [PMID: 35497446 PMCID: PMC9049245 DOI: 10.1039/c9ra10730d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 11/21/2022] Open
Abstract
EPR and NMR experiments on a quinazolinone-based Schiff's base in DMSO solution showed that irradiation with UV light (365 nm) leads to photochemically-induced isomerization from the anti- to the higher-energy syn-form around the -N-N[double bond, length as m-dash] linkage. The anti- to syn-isomerization was relatively fast, and the maximum amount of conversion detected (25%) was reached within 10 min; thermodynamic equilibrium re-established itself in about 15 min. DFT calculations were performed on the investigated compound and small model systems, and reproduced the experimental fact of the anti-conformer being lower in energy than the syn. Theoretical analysis of excited states, including visualisation of natural transition orbitals, identified possible pathways for syn-anti isomerisation, although the details vary with π-system size, making the use of small models of limited utility. The investigated compound probably isomerises through the third singlet excited state (S3), a π-π* excitation, relaxing through S2, also a π-π* state.
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovak Republic
| | - James Asher
- Institute of Inorganic Chemistry, Slovak Academy of Sciences Dúbravská cesta 9 845 36 Bratislava Slovak Republic
| | - Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovak Republic +421-2-5940222 +421-2-59410323
| |
Collapse
|
4
|
Onukwufor JO, Trewin AJ, Baran TM, Almast A, Foster TH, Wojtovich AP. Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic Biol Med 2020; 147:1-7. [PMID: 31841676 PMCID: PMC6980788 DOI: 10.1016/j.freeradbiomed.2019.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins can generate reactive oxygen species (ROS) upon absorption of photons via type I and II photosensitization mechanisms. The red fluorescent proteins KillerRed and SuperNova are phototoxic proteins engineered to generate ROS and are used in a variety of biological applications. However, their relative quantum yields and rates of ROS production are unclear, which has limited the interpretation of their effects when used in biological systems. We cloned and purified KillerRed, SuperNova, and mCherry - a related red fluorescent protein not typically considered a photosensitizer - and measured the superoxide (O2•-) and singlet oxygen (1O2) quantum yields with irradiation at 561 nm. The formation of the O2•--specific product 2-hydroxyethidium (2-OHE+) was quantified via HPLC separation with fluorescence detection. Relative to a reference photosensitizer, Rose Bengal, the O2•- quantum yield (ΦO2•-) of SuperNova was determined to be 1.5 × 10-3, KillerRed was 0.97 × 10-3, and mCherry 1.2 × 10-3. At an excitation fluence of 916.5 J/cm2 and matched absorption at 561 nm, SuperNova, KillerRed and mCherry made 3.81, 2.38 and 1.65 μM O2•-/min, respectively. Using the probe Singlet Oxygen Sensor Green (SOSG), we ascertained the 1O2 quantum yield (Φ1O2) for SuperNova to be 22.0 × 10-3, KillerRed 7.6 × 10-3, and mCherry 5.7 × 10-3. These photosensitization characteristics of SuperNova, KillerRed and mCherry improve our understanding of fluorescent proteins and are pertinent for refining their use as tools to advance our knowledge of redox biology.
Collapse
Affiliation(s)
- John O Onukwufor
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Timothy M Baran
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Anmol Almast
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States.
| |
Collapse
|
5
|
Wu Y, Zhou G, Meng Q, Tang X, Liu G, Yin H, Zhao J, Yang F, Yu Z, Luo Y. Visible Light-Induced Aerobic Epoxidation of α,β-Unsaturated Ketones Mediated by Amidines. J Org Chem 2018; 83:13051-13062. [PMID: 30285439 DOI: 10.1021/acs.joc.8b01710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An aerobic photoepoxidation of α,β-unsaturated ketones driven by visible light in the presence of tetramethylguanidine (3b), tetraphenylporphine (H2TPP), and molecular oxygen under mild conditions was revealed. The corresponding α,β-epoxy ketones were obtained in yields of up to 94% in 96 h. The reaction time was shortened to 4.6 h by flow synthesis. The mechanism related to singlet oxygen was supported by experiments and density functional theory (DFT) calculations.
Collapse
|
6
|
Hricovíni M, Mazúr M, Sîrbu A, Palamarciuc O, Arion VB, Brezová V. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study. Molecules 2018; 23:molecules23040721. [PMID: 29561827 PMCID: PMC6017935 DOI: 10.3390/molecules23040721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Milan Mazúr
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Angela Sîrbu
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova.
| | - Oleg Palamarciuc
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova.
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| |
Collapse
|
7
|
Krasnovsky Jr. АА. Singlet molecular oxygen: Early history of spectroscopic and photochemical studies with contributions of А.N. Terenin and Terenin’s school. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Minaev B. Photochemistry and Spectroscopy of Singlet Oxygen in Solvents. Recent Advances which Support the Old Theory. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular oxygen is a paramagnetic gas with the triplet O2( ) ground state which exhibits just sluggish chemical reactivity in the absence of radical sources. In contrast, the excited metastable singlet oxygen O2( ) is highly reactive; it can oxygenate organic molecules in a wide range of specific reactions which differ from those of the usual triplet oxygen of the air. This makes the singlet oxygen an attractive reagent for new synthesis and even for medical treatments in photodynamic therapy. As an important intermediate O2( ) has attracted great attention of chemists during half-century studies of its reactivity and spectroscopy, but unusual properties of singlet oxygen makes it difficult to unravel all mysterious features. The semiempirical theory of spin-orbit coupling in dioxygen and in collision complexes of O2 with diamagnetic molecules proposed in 1982 year has explained and predicted many photochemical and spectral properties of dioxygen produced by the dye sensitization in solvents. Recent experiments with direct laser excitation of O2 in solvents provide a complete support of the old theory. The present review scrutinizes the whole story of development and experimental verification of this theory.
Collapse
|
10
|
Letuta S, Pashkevich S, Ishemgulov A, Lantukh Y, Alidzhanov E, Sokabaeva S, Bryukhanov V. Delayed luminescence of erythrosine in biological tissue and photodynamic therapy dosimetry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:232-6. [DOI: 10.1016/j.jphotobiol.2016.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
11
|
Szewczyk G, Zadlo A, Sarna M, Ito S, Wakamatsu K, Sarna T. Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion. Pigment Cell Melanoma Res 2016; 29:669-678. [PMID: 27505632 DOI: 10.1111/pcmr.12514] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/27/2016] [Indexed: 11/28/2022]
Abstract
In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10-4 ) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
He X, Zeng Q, Zhou Y, Zeng Q, Wei X, Zhang C. A DFT Study Toward the Reaction Mechanisms of TNT With Hydroxyl Radicals for Advanced Oxidation Processes. J Phys Chem A 2016; 120:3747-53. [DOI: 10.1021/acs.jpca.6b03596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi He
- Institute
of Chemical Materials, Chinese Academy of Engineering and Physics, Mianyang 621010 China
- School
of Mechano-electronic Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qun Zeng
- Institute
of Chemical Materials, Chinese Academy of Engineering and Physics, Mianyang 621010 China
| | - Yang Zhou
- Institute
of Chemical Materials, Chinese Academy of Engineering and Physics, Mianyang 621010 China
| | - Qingxuan Zeng
- School
of Mechano-electronic Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xianfeng Wei
- Institute
of Chemical Materials, Chinese Academy of Engineering and Physics, Mianyang 621010 China
| | - Chaoyang Zhang
- Institute
of Chemical Materials, Chinese Academy of Engineering and Physics, Mianyang 621010 China
| |
Collapse
|
13
|
Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental Implications of Hydroxyl Radicals (•OH). Chem Rev 2015; 115:13051-92. [DOI: 10.1021/cr500310b] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sasho Gligorovski
- Aix-Marseille
Université, CNRS, LCE UMR 7376, 13331 Marseilles, France
| | - Rafal Strekowski
- Aix-Marseille
Université, CNRS, LCE UMR 7376, 13331 Marseilles, France
| | - Stephane Barbati
- Aix-Marseille
Université, CNRS, LCE UMR 7376, 13331 Marseilles, France
| | - Davide Vione
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy
- Centro
Interdipartimentale NatRisk, Università di Torino, Via L. Da
Vinci 44, 10095 Grugliasco, Italy
| |
Collapse
|
14
|
Buglak AA, Telegina TA, Lyudnikova TA, Vechtomova YL, Kritsky MS. Photooxidation of tetrahydrobiopterin under UV irradiation: possible pathways and mechanisms. Photochem Photobiol 2014; 90:1017-26. [PMID: 24773158 DOI: 10.1111/php.12285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/24/2014] [Indexed: 12/16/2023]
Abstract
Tetrahydrobiopterin (H4 Bip) is a cofactor for several key enzymes, including NO synthases and aromatic amino acid hydroxylases (AAHs). Normal functioning of the H4 Bip regeneration cycle is extremely important for the work of AAHs. Oxidized pterins may accumulate if the H4 Bip regeneration cycle is disrupted or if H4 Bip autoxidation occurs. These oxidized pterins can photosensitize the production of singlet molecular oxygen (1)O2 and thus cause oxidative stress. In this context, we studied the photooxidation of H4 Bip in phosphate buffer at pH 7.2. We found that UV irradiation of H4 Bip affected its oxidation rate (quantum yield Φ300 = (2.7 ± 0.4) × 10(-3)). The effect of UV irradiation at λ = 350 nm on H4 Bip oxidation was stronger, especially in the presence of biopterin (Bip) (Φ350 = (9.7 ± 1.5) × 10(-3)). We showed that the rate of H4 Bip oxidation linearly depends on Bip concentration. Experiments with KI, a selective quencher of triplet pterins at micromolar concentrations, demonstrated that the oxidation is sensitized by the triplet state biopterin (3) Bip. Apparently, electron transfer sensitization (Type-I mechanism) is dominant. Energy transfer (Type-II mechanism) and singlet oxygen generation play only a secondary role. The mechanisms of H4 Bip photooxidation and their biological meaning are discussed.
Collapse
Affiliation(s)
- Andrey A Buglak
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
15
|
Najafpour MM, Ghobadi MZ, Haghighi B, Eaton-Rye JJ, Tomo T, Shen JR, Allakhverdiev SI. Nano-sized manganese-calcium cluster in photosystem II. BIOCHEMISTRY (MOSCOW) 2014; 79:324-36. [DOI: 10.1134/s0006297914040026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ptushenko VV, Ptushenko OS, Tikhonov AN. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants. BIOCHEMISTRY (MOSCOW) 2014; 79:260-72. [DOI: 10.1134/s0006297914030122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Shafeekh KM, Soumya MS, Rahim MA, Abraham A, Das S. Synthesis and characterization of near-infrared absorbing water soluble squaraines and study of their photodynamic effects in DLA live cells. Photochem Photobiol 2014; 90:585-95. [PMID: 24417651 DOI: 10.1111/php.12236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/02/2014] [Indexed: 01/20/2023]
Abstract
Here, we report the synthesis, photophysical properties and photodynamic effects in DLA live cells of three water soluble squaraine dyes, viz. bisbenzothiazolium squaraine dyes SQMI and SQDI with iodine in one and both benzothiazolium units, respectively, and an unsymmetrical squaraine dye ASQI containing iodinated benzothiazolium and aniline substituents. The diiodinated SQDI showed an anomalous trend in both fluorescence and triplet quantum yields over the monoiodinated SQMI, with SQDI showing higher fluorescence and lower triplet quantum yields compared to SQMI. Nanosecond laser flash photolysis of SQDI and SQMI indicated the formation of triplet excited states with quantum yield of 0.19 and 0.26, respectively. On photoirradiation, both the SQDI and SQMI generate singlet oxygen and it was observed that both dyes undergoing oxidation reactions with the singlet oxygen generated. ASQI which exhibited a lower triplet quantum yield of 0.06 was, however, stable and did not react with the singlet oxygen generated. In vitro cytotoxicity studies of these dyes in DLA live cells were performed using Trypan blue dye exclusion method and it reflect an order of cytotoxicity of SQDI>SQMI>ASQI. Intracellular generation of the ROS was confirmed by dichlorofluorescein assay after the in vitro PDT.
Collapse
Affiliation(s)
- Kulathinte M Shafeekh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST-CSIR), Trivandrum, India
| | | | | | | | | |
Collapse
|
18
|
The effect of γ-ray irradiation on thermal oxidation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Kuznetsova NA, Yuzhakova OA, Nedachin AE, Dmitrieva RA, Doskina TV, Maksimkina TN, Kaliya OL. Effect of support pore size on antiviral activity of the heterogeneous photosensitizer with phthalocyanine covalently linked to aminopropyl silica gel. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New heterogeneous photodynamic sensitizers, in which the active phase, (polycholinyl)tetra-3-phenylthiophthalocyanine of aluminum, grafted to aminopropylated silica gels with pore sizes of 10, 25 and 75 nm, were tested in MS2 coli phage and poliovirus photoinactivation. In aqueous suspensions of the photosensitizers, the photoantiviral activity of the active phase was observed. It was found that both phthalocyanine and viruses cannot penetrate into 10 and 25 nm pores. In the sample with 75 nm pores, both the active phase and virus localize predominantly inside pores, providing conditions for most efficient photovirucidal activity.
Collapse
Affiliation(s)
- Nina A. Kuznetsova
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | - Olga A. Yuzhakova
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | - Alexander E. Nedachin
- A.N. Sysin Research Institute of Human Ecology and Environmental Health, Pogodinskaya 10/15, Moscow 119993, Russia
| | - Raisa A. Dmitrieva
- A.N. Sysin Research Institute of Human Ecology and Environmental Health, Pogodinskaya 10/15, Moscow 119993, Russia
| | - Tatjana V. Doskina
- A.N. Sysin Research Institute of Human Ecology and Environmental Health, Pogodinskaya 10/15, Moscow 119993, Russia
| | - Tatjana N. Maksimkina
- A.N. Sysin Research Institute of Human Ecology and Environmental Health, Pogodinskaya 10/15, Moscow 119993, Russia
| | - Oleg L. Kaliya
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| |
Collapse
|
20
|
Kuznetsova NA, Yuzhakova OA, Kozlov AS, Krasnovskii AA, Strakhovskaya MG, Kaliya OL. Effect of support-pore size on activity of heterogeneous photosensitizer based on phthalocyanine covalently grafted to aminopropylated silica gel. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1995078013010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
22
|
Kozinska A, Oles T, Sarna T. Photoactivation and Detection of Photoexcited Molecules and Photochemical Products. Isr J Chem 2012. [DOI: 10.1002/ijch.201200019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Kuznetsova NA, Yuzhakova OA, Strakhovskaya MG, Shumarina AO, Kozlov AS, Krasnovsky AA, Kaliya OL. New heterogeneous photosensitizers with phthalocyanine molecules covalently linked to aminopropyl silica gel. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611003690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New heterogeneous photosensitizers were synthesized, in which phthalocyanines of zinc and aluminum, tetrasubstituted at non-peripheral positions with modified thiophenyl groups, were grafted to aminopropyl silica gel. The absorption and fluorescence spectra, and the quantum yields of fluorescence and photosensitized singlet oxygen generation were estimated for aqueous suspensions of these sensitizers. It is shown that upon photoexcitation, silica gel-bound phthalocyanines produce singlet oxygen and display photobactericidal activity against bacteria E. coli.
Collapse
Affiliation(s)
- Nina A. Kuznetsova
- Organic Intermediates and Dyes Institute, B. Sadovaya 1/4, Moscow 123995, Russia
| | - Olga A. Yuzhakova
- Organic Intermediates and Dyes Institute, B. Sadovaya 1/4, Moscow 123995, Russia
| | - Marina G. Strakhovskaya
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna O. Shumarina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anton S. Kozlov
- A.N. Bach Institute of Biochemistry Russian Academy of Science, Leninkii pr. 33, Moscow 119071, Russia
| | - Alexander A. Krasnovsky
- A.N. Bach Institute of Biochemistry Russian Academy of Science, Leninkii pr. 33, Moscow 119071, Russia
| | - Oleg L. Kaliya
- Organic Intermediates and Dyes Institute, B. Sadovaya 1/4, Moscow 123995, Russia
| |
Collapse
|
24
|
Ovchinnikov MY, Kazakov DV, Khursan SL. Kinetics and mechanism of the highly efficient generation of singlet oxygen in dimethyldioxirane decomposition induced by the chloride ion. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Natarajan A, Burns A, Takemori M, Jain S, Boden E, Vasudevan V, Puthamane K, Naik SN, Kuriakose G. Pyrophthalones as blue wavelength absorbers in thermoplastic media. Photochem Photobiol 2011; 88:250-6. [PMID: 22077769 DOI: 10.1111/j.1751-1097.2011.01036.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have explored the utility of pyrophthalones as violet-blue light filtering dyes in polymer matrices for wavelengths below 450 nm. Further, we have investigated the photodegradation of these molecules in thermoplastic media and the mechanisms behind their degradation. Finally, a range of additives have been explored to improve the photostability of these molecules to achieve the desired performance.
Collapse
|
26
|
Piffaretti F, Santhakumar K, Forte E, van den Bergh HE, Wagnières GA. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:037005. [PMID: 21456878 DOI: 10.1117/1.3558846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.
Collapse
|
27
|
Regensburger J, Maisch T, Felgenträger A, Santarelli F, Bäumler W. A helpful technology--the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). JOURNAL OF BIOPHOTONICS 2010; 3:319-327. [PMID: 20222100 DOI: 10.1002/jbio.200900106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photodynamic inactivation of bacteria (PDIB) is considered a new approach for the struggle against multiresistant bacteria. To achieve a sufficient level of bacteria killing, the photosensitizer must attach to and/or penetrate the bacteria and generate a sufficiently high amount of singlet oxygen. To optimize PDIB, the direct detection and quantification of singlet oxygen in bacteria is a helpful tool. Singlet-oxygen luminescence is a very weak signal, in particular in living bacteria. We first performed experiments in aqueous photosensitizer solution to optimize the luminescence system. We eliminated non-singlet-oxygen photons, which is important for the quantification of singlet oxygen and its rise and decay rates. This procedure is even more important when the laser excitation beam is scattered by bacteria (diameter 1 microm). In suspensions with both Gram-positive and Gram-negative bacteria we then clearly detected singlet oxygen by its luminescence and determined the respective rise and decay times. The decay times should provide an indication of localization of singlet oxygen and hence of the photosensitizer even in small bacteria.
Collapse
|
28
|
The theoretical trajectory for the chloride-ion-induced generation of singlet oxygen in the decomposition of dimethyldioxirane. J Photochem Photobiol A Chem 2010. [DOI: 10.1016/j.jphotochem.2010.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Volpi G, Garino C, Salassa L, Fiedler J, Hardcastle K, Gobetto R, Nervi C. Cationic Heteroleptic Cyclometalated Iridium Complexes with 1-Pyridylimidazo[1,5-α]pyridine Ligands: Exploitation of an Efficient Intersystem Crossing. Chemistry 2009; 15:6415-27. [DOI: 10.1002/chem.200801474] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, Christensen IL. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 2008; 60:1600-14. [PMID: 18840487 PMCID: PMC2695009 DOI: 10.1016/j.addr.2008.08.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/16/2008] [Indexed: 12/18/2022]
Abstract
Semiconductor quantum dots and nanoparticles composed of metals, lipids or polymers have emerged with promising applications for early detection and therapy of cancer. Quantum dots with unique optical properties are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous, and toxicity of such quantum dots to living cells, and humans, is not yet systematically investigated. Therefore, search for less toxic materials with similar targeting and optical properties is of further interest. Whereas, the investigation of luminescence nanoparticles as light sources for cancer therapy is very interesting. Despite advances in neurosurgery and radiotherapy the prognosis for patients with malignant gliomas has changed little for the last decades. Cancer treatment requires high accuracy in delivering ionizing radiation to reduce toxicity to surrounding tissues. Recently some research has been focused in developing photosensitizing quantum dots for production of radicals upon absorption of visible light. In spite of the fact that visible light is safe, this approach is suitable to treat only superficial tumours. Ionizing radiation (X-rays and gamma rays) penetrate much deeper thus offering a big advantage in treating patients with tumours in internal organs. Such concept of using quantum dots and nanoparticles to yield electrons and radicals in photodynamic and radiation therapies as well their combination is reviewed in this article.
Collapse
Affiliation(s)
- Petras Juzenas
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|