1
|
Grigoreva TA, Romanova AA, Tribulovich VG, Pestov NB, Oganov RA, Kovaleva DK, Korneenko TV, Barlev NA. p53: The Multifaceted Roles of Covalent Modifications in Cancer. Pharmaceuticals (Basel) 2024; 17:1682. [PMID: 39770524 PMCID: PMC11677429 DOI: 10.3390/ph17121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The p53 protein has attracted huge research interest over several decades due to its role as one of the most important tumor suppressors in mammals, which orchestrates a synchronous response from normal cells in the body to various forms of stress. The diverse cellular activities of the p53 protein are regulated mainly via its post-translational modifications (PTMs). PTMs affect p53 on several levels: at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes, at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes; at the level of proteolysis in the absence of stress; and on the contrary, at the level of augmented protein stability in response to stress signals. Disruptions in these regulatory mechanisms can lead to deviations from normal cellular function, boosting tumor initiation and progression. Conversely, targeted interventions in these pathways could prove beneficial for the development of antitumor therapies. Advancing our understanding of p53 modifiers and the proteins involved in its regulation equips researchers with an expanded toolkit for studying cellular processes and for developing biologically active molecules that influence p53-mediated responses.
Collapse
Affiliation(s)
- Tatiana A. Grigoreva
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Angelina A. Romanova
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Vyacheslav G. Tribulovich
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Ruslan A. Oganov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Diana K. Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Tatyana V. Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg 194064, Russia
- Department of Biomedicine, School of Medicine, Nazarbayev University, Astana 02000, Kazakhstan
| |
Collapse
|
2
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2024:10.1007/s11030-024-10964-z. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
3
|
Zhang L, Zhi K, Su Y, Peng W, Meng X. Effect of eIF2α in Neuronal Injury Induced by High Glucose and the Protective Mechanism of Resveratrol. Mol Neurobiol 2023; 60:6043-6059. [PMID: 37410333 DOI: 10.1007/s12035-023-03457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Diabetes mellitus (DM) is a type of metabolic disease characterized by chronic hyperglycemia, which can lead to different degrees of cognitive decline. Therefore, it is crucial to explore the molecular biological mechanisms of neuronal injury. In this study, we investigated the effect of high glucose on eIF2α expression and the mechanism of neuronal injury, and on this basis, the protective mechanism of resveratrol is explored. Treatment with 50 mM high glucose in cortical neurons increased the levels of eIF2α phosphorylation; the expressions of ATF4 and CHOP increased. ISRIB alleviated high glucose-induced neuronal injury by reducing eIF2α phosphorylation when neurons were pretreated with ISRIB before high glucose treatment. Compared with the high glucose-treated group, resveratrol pretreatment reduced eIF2α phosphorylation, the levels of its downstream molecules ATF4 and CHOP, and LDH release. Resveratrol reduced the level of cortical eIF2α phosphorylation and the expression of its downstream molecules in DM mice and improved the ability of spatial memory and learning in DM mice without affecting anxiety and motor performance. Meanwhile, resveratrol modulated the expression of Bcl-2 protein and also effectively decreased the DM-induced up-regulation of Bax, caspase-3, p53, p21, and p16. Taken together, these results suggested that high glucose caused neuronal injury through the eIF2α/ATF4/CHOP pathway which was inhibited by ISRIB and resveratrol. The present study indicates that eIF2α is the new target for the treatment of high glucose-induced neuronal injury, and resveratrol is a potential new medicine to treat diabetes encephalopathy.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaining Zhi
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanfang Su
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
5
|
Role of p53 in transcriptional repression of SVCT2. Mol Biol Rep 2021; 48:1651-1658. [PMID: 33580460 DOI: 10.1007/s11033-021-06179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
SVCT2, Sodium-dependent Vitamin C Transporter 2, uniquely transports ascorbic acid (also known as vitamin C and ascorbate) into all types of cells. Vitamin C is an essential nutrient that must be obtained through the diet and plasma levels are tightly regulated by transporter activity. Vitamin C plays an important role in antioxidant defenses and is a cofactor for many enzymes that enable hormone synthesis, oxygen sensing, collagen synthesis and epigenetic pathways. Although SVCT2 has various functions, regulation of its expression/activity remains poorly understood. We found a p53-binding site, within the SVCT2 promoter, using a transcription factor binding-site prediction tool. In this study, we show that p53 can directly repress SVCT2 transcription by binding a proximal- (~-185 to -171 bp) and a distal- (~-1800 to -1787 bp) p53-responsive element (PRE), Chromatin immunoprecipitation assays showed that PRE-bound p53 interacts with the corepressor-histone deacetylase 3 (HDAC3), resulting in deacetylation of histones Ac-H4, at the proximal promoter, resulting in transcriptional silencing of SVCT2. Overall, our data suggests that p53 is a potent transcriptional repressor of SVCT2, a critical transporter of diet-derived ascorbic acid, across the plasma membranes of numerous essential tissue cell types.
Collapse
|
6
|
Gutiérrez-Hernández JM, Castorena-Alejandro C, Pozos-Guillén A, Toriz-González G, Flores H, Escobar-García DM. Gene expression profile involved in signaling and apoptosis of osteoblasts in contact with cellulose/MWCNTs scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111531. [PMID: 33255084 DOI: 10.1016/j.msec.2020.111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The aim of this work was to evaluate the expression profile of genes involved in signaling, intracellular and extracellular Ca+2 concentration and apoptosis pathways of osteoblasts in contact with a scaffold made of a composite of BCN/MWCNTs. Osteoblasts were cultivated on BCN, MWCNTs and their mixtures. Osteoblast RNA was extracted for sintering cDNA to amplify genes of interest by PCR; intra- and extracellular calcium (Ca2+) was also quantified. Regarding the genes that participate in the regulation paths (MAPK and NF-KB), it was found that only the expression of NF-KB was affected in all treatments. The expression of VEGFA increased, except in the treatment of high concentration of MWCNTs, where remained unchanged. The expression of genes Apaf-1 and Bcl-2/Bax and TP53 increased as compared to the control (except for TP53 in BC and C1/MWCNTs) indicating that cells are responding to the presence of BCN-MWCNTs composites scaffolds. The results suggest that osteoblast developed a modification in the expression profile of genes that actively participate in cellular processes such as proliferation, vasculogenesis and apoptosis, which may be modulated by the increase of intra- and extracellular Ca2+ concentration.
Collapse
Affiliation(s)
| | - Claudia Castorena-Alejandro
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Guillermo Toriz-González
- Department of Wood, Cellulose and Paper Research, University of Guadalajara, 45110 Guadalajara, Mexico; Transdisciplinar Institute for Research and Services, University of Guadalajara, 45150 Guadalajara, Mexico
| | - Héctor Flores
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico.
| |
Collapse
|
7
|
Boutry J, Dujon AM, Gerard AL, Tissot S, Macdonald N, Schultz A, Biro PA, Beckmann C, Hamede R, Hamilton DG, Giraudeau M, Ujvari B, Thomas F. Ecological and Evolutionary Consequences of Anticancer Adaptations. iScience 2020; 23:101716. [PMID: 33241195 PMCID: PMC7674277 DOI: 10.1016/j.isci.2020.101716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular cheating leading to cancers exists in all branches of multicellular life, favoring the evolution of adaptations to avoid or suppress malignant progression, and/or to alleviate its fitness consequences. Ecologists have until recently largely neglected the importance of cancer cells for animal ecology, presumably because they did not consider either the potential ecological or evolutionary consequences of anticancer adaptations. Here, we review the diverse ways in which the evolution of anticancer adaptations has significantly constrained several aspects of the evolutionary ecology of multicellular organisms at the cell, individual, population, species, and ecosystem levels and suggest some avenues for future research.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Anne-Lise Gerard
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Nick Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Aaron Schultz
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Peter A. Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Science, Western Sydney University, Parramatta, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Alidousty C, Duerbaum N, Wagener-Ryczek S, Baar T, Martelotto LG, Heydt C, Siemanowski J, Holz B, Binot E, Fassunke J, Merkelbach-Bruse S, Wolf J, Kron A, Buettner R, Schultheis AM. Prevalence and potential biological role of TERT amplifications in ALK translocated adenocarcinoma of the lung. Histopathology 2020; 78:578-585. [PMID: 32946634 DOI: 10.1111/his.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
Abstract
AIMS The advent of specific ALK-targeting drugs has radically changed the outcome of patients with ALK translocated non-small-cell lung cancer (NSCLC). However, emerging resistance to treatment with ALK inhibitors in these patients remains a major concern. In previous studies, we analysed two ALK+ patient cohorts (TP53 wild-type/TP53 mutated) in terms of copy number alterations. All patients belonging to the TP53 wild-type group had mainly genetically stable genomes, with one exception showing chromosomal instability and amplifications of several gene loci, including TERT. Here, we aimed to determine the prevalence of TERT amplifications in these ALK+ lung cancer patients by analysing an independent cohort of 109 ALK translocated cases. We further analysed the copy numbers of numerous cancer-relevant genes and other genetic aberrations. METHODS AND RESULTS The prevalence of TERT amplifications was determined by means of FISH analyses. Copy numbers of 87 cancer-relevant genes were determined by NanoString nCounter® technology, FoundationOne® and lung-specific NGS panels in some of these TERT-amplified samples, and clinical data on patients with TERT-amplified tumours were collected. Our data revealed that five (4.6%) of all 109 analysed ALK+ patients harboured amplification of TERT and that these patients had genetically unstable genomes. CONCLUSIONS Our preliminary study shows that ALK+ adenocarcinomas should be evaluated in the context of their genomic background in order to more clearly understand and predict patients' individual course of disease.
Collapse
Affiliation(s)
| | - Nicolai Duerbaum
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Till Baar
- Faculty of Medicine, Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | | | - Carina Heydt
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Janna Siemanowski
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Barbara Holz
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Elke Binot
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Jürgen Wolf
- Network Genomic Medicine, Cologne, Germany.,Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center for Integrated Oncology Koeln Bonn, Cologne, Germany
| | - Anna Kron
- Network Genomic Medicine, Cologne, Germany.,Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center for Integrated Oncology Koeln Bonn, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.,Network Genomic Medicine, Cologne, Germany.,Center for Integrated Oncology Koeln Bonn, Cologne, Germany
| | - Anne M Schultheis
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
9
|
Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration. Life (Basel) 2020; 10:life10070101. [PMID: 32629809 PMCID: PMC7400128 DOI: 10.3390/life10070101] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022] Open
Abstract
Aggregation of the misfolded proteins β-amyloid, tau, huntingtin, and α-synuclein is one of the most important steps in the pathology underlying a wide spectrum of neurodegenerative disorders, including the two most common ones—Alzheimer’s and Parkinson’s disease. Activity and toxicity of these proteins depends on the stage and form of aggregates. Excessive production of free radicals, including reactive oxygen species which lead to oxidative stress, is proven to be involved in the mechanism of pathology in most of neurodegenerative disorders. Both reactive oxygen species and misfolded proteins play a physiological role in the brain, and only deregulation in redox state and aggregation of the proteins leads to pathology. Here, we review the role of misfolded proteins in the activation of ROS production from various sources in neurons and glia. We discuss if free radicals can influence structural changes of the key toxic intermediates and describe the putative mechanisms by which oxidative stress and oligomers may cause neuronal death.
Collapse
|
10
|
Yu T, Wang Z, You X, Zhou H, He W, Li B, Xia J, Zhu H, Zhao Y, Yu G, Xiong Y, Yang Y. Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging (Albany NY) 2020; 12:10359-10369. [PMID: 32459661 PMCID: PMC7346062 DOI: 10.18632/aging.103262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Although osteoporosis is one of the most common chronic age-related diseases, there is currently no gold standard for treatment. Evidence suggests resveratrol, a natural polyphenolic compound, may be helpful in the treatment of osteoporosis and other diseases. However, the molecular mechanisms underlying the anti-osteoporotic effects of resveratrol remain largely unknown. In the present study, KEGG pathway enrichment analysis of resveratrol-targeted genes identified 33 associated pathways, 12 of which were also involved in osteoporosis. In particular, the MDM2/p53 signaling pathway was identified as a potential key pathway among the shared pathways. In vitro experiments indicated that MDM2-mediated p53 degradation induced osteoblast differentiation, and resveratrol could partially reverse p53-dependent inhibition of osteogenic differentiation. These findings suggest resveratrol may alleviate osteoporosis at least in part by modulating the MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zaiyan Wang
- Department of Respiratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaomeng You
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haichao Zhou
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenbao He
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bing Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiang Xia
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hui Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Youguang Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guangrong Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfeng Yang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
11
|
Chen L, Han Y, Li Y, Chen B, Bai X, Belguise K, Wang X, Chen Y, Yi B, Lu K. Hepatocyte-derived exosomal MiR-194 activates PMVECs and promotes angiogenesis in hepatopulmonary syndrome. Cell Death Dis 2019; 10:853. [PMID: 31700002 PMCID: PMC6838168 DOI: 10.1038/s41419-019-2087-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a serious vascular complication in the setting of liver disease. Factors produced by the liver are essential to regulate pulmonary angiogenesis in the pathogenesis of HPS; however, the pathogenic mechanisms of pulmonary angiogenesis are not fully understood. We investigated the role of HPS rat serum exosomes (HEs) and sham-operated rat serum exosomes (SEs) in the regulation of angiogenesis. We found that HEs significantly enhance PMVEC proliferation, migration, and tube formation. We further identified miR-194 was the most notably increased miRNA in HEs compared to SEs. Once released, hepatocyte-derived exosomal miR-194 was internalized by PMVECs, leading to the promotion of PMVEC proliferation, migration, and tube formation through direct targeting of THBS1, STAT1, and LIF. Importantly, the pathogenic role of exosomal miR-194 in initiating angiogenesis was reversed by P53 inhibition, exosome secretion inhibition or miR-194 inhibition. Additionally, high levels of miR-194 were found in serum exosomes and were positively correlated with P(A-a)O2 in HPS patients and rats. Thus, our results highlight that the exosome/miR-194 axis plays a critical pathologic role in pulmonary angiogenesis, representing a new therapeutic target for HPS.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yi Han
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xuehong Bai
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Karine Belguise
- LBCMCP, ×tégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xiaobo Wang
- LBCMCP, ×tégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yang Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
IL-6 deficiency attenuates p53 protein accumulation in aged male mouse hippocampus. Biogerontology 2019; 21:29-43. [PMID: 31598806 PMCID: PMC6942598 DOI: 10.1007/s10522-019-09841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Our earlier studies demonstrated slower age-related memory decline in IL-6-deficient than in control mice. Therefore, in the present study we evaluated the effect of IL-6 deficiency and aging on expression of p53, connected with accumulation of age-related cellular damages, in hippocampus of 4- and 24-month-old IL-6-deficient C57BL/6J (IL-6KO) and wild type control (WT) mice. The accumulation of p53 protein in hippocampus of aged IL-6KO mice was significantly lower than in aged WT ones, while p53 mRNA level was significantly higher in IL-6-deficient mice, what indicates that the effect was independent on p53 transcription. Presence of few apoptotic cells in hippocampal dentate gyrus and lack of changes in levels of pro-apoptotic Bax, antiapoptotic Bcl-2, as well as in p21 protein in aged animals of both genotypes, points to low transcriptional activity of p53, especially in aged WT mice. Because the amount of p53 protein did not correlate with the level of Mdm2 protein, its main negative regulator, other than Mdm2-dependent mechanism was involved in p53 build-up. Significantly higher mRNA levels of autophagy-associated genes: Pten, Tsc2, and Dram1 in IL-6KO mice, in conjunction with significantly lower amount of Bcl-2 protein in 4-month-old IL-6KO mice, suggests that lack of IL-6/STAT3/Bcl-2 signaling could account for better autophagy performance in these mice, preventing excessive accumulation of proteins. Taken together, attenuated p53 protein build-up, absence of enhanced apoptosis, and transcriptional up-regulation of autophagy-associated genes imply that IL-6 deficiency may protect hippocampus from age-related accumulation of cellular damages.
Collapse
|
13
|
Naryzhny SN, Legina OK. [Structural-functional diversity of p53 proteoforms]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:263-276. [PMID: 31436168 DOI: 10.18097/pbmc20196504263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein p53 is one of the most studied proteins. This attention is primarily due to its key role in the cellular mechanisms associated with carcinogenesis. Protein p53 is a transcription factor involved in a wide variety of processes: cell cycle regulation and apoptosis, signaling inside the cell, DNA repair, coordination of metabolic processes, regulation of cell interactions, etc. This multifunctionality is apparently determined by the fact that p53 is a vivid example of how the same protein can be represented by numerous proteoforms bearing completely different functional loads. By alternative splicing, using different promoters and translation initiation sites, the TP53 gene gives rise to at least 12 isoforms, which can additionally undergo numerous (>200) post-translational modifications. Proteoforms generated due to numerous point mutations in the TP53 gene are adding more complexity to this picture. The proteoforms produced are involved in various processes, such as the regulation of p53 transcriptional activity in response to various factors. This review is devoted to the description of the currently known p53 proteoforms, as well as their possible functionality.
Collapse
Affiliation(s)
- S N Naryzhny
- Petersburg Nuclear Physics Institute NRC Kurchatov Institute, Leningrad region, Gatchina, Russia
| | - O K Legina
- Petersburg Nuclear Physics Institute NRC Kurchatov Institute, Leningrad region, Gatchina, Russia
| |
Collapse
|
14
|
Beloglazkina AA, Karpov NA, Mefedova SR, Polyakov VS, Skvortsov DA, Kalinina MA, Tafeenko VA, Majouga AG, Zyk NV, Beloglazkina EK. Synthesis of dispirooxindoles containing N-unsubstituted heterocyclic moieties and study of their anticancer activity. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2511-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Kim DH, Han KH. PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins. Mol Cells 2018; 41:889-899. [PMID: 30352491 PMCID: PMC6199570 DOI: 10.14348/molcells.2018.0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| |
Collapse
|
16
|
Zhou J, Qiu C, Pi N, Li S, Cheng X, Zhang L, Chen Y, Huang Y, Sun Y, Su Z. A Protein Biosynthesis Machinery Strategy for Identifying P53 PTC
-Rescuing Compounds as Synergic Anti-Tumor Drugs. ChemistrySelect 2018. [DOI: 10.1002/slct.201802635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Zhou
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Chengbin Qiu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Ni Pi
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Xiyao Cheng
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Lei Zhang
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yao Chen
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yongqi Huang
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education and Wuhan University; School of Pharmaceutical Sciences Wuhan; Hubei 430071 P. R. China
| | - Zhengding Su
- Department of Biotechnology; Hubei University of Technology, Wuhan, Hubei; 430068 P. R. China
| |
Collapse
|
17
|
Alidousty C, Baar T, Martelotto LG, Heydt C, Wagener S, Fassunke J, Duerbaum N, Scheel AH, Frank S, Holz B, Binot E, Kron A, Merkelbach‐Bruse S, Ihle MA, Wolf J, Buettner R, Schultheis AM. Genetic instability and recurrent MYC amplification in ALK-translocated NSCLC: a central role of TP53 mutations. J Pathol 2018; 246:67-76. [PMID: 29885057 PMCID: PMC6120547 DOI: 10.1002/path.5110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Till Baar
- University of Cologne, Faculty of Medicine, Institute of Medical Statistics and Computational BiologyCologneGermany
| | | | - Carina Heydt
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Svenja Wagener
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jana Fassunke
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Nicolai Duerbaum
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Andreas H Scheel
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Sandra Frank
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Barbara Holz
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Elke Binot
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Anna Kron
- Network Genomic MedicineCologneGermany
| | | | - Michaela A Ihle
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jürgen Wolf
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology Cologne BonnGermany
| | - Reinhard Buettner
- University Hospital Cologne, Institute of PathologyCologneGermany
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
| | | |
Collapse
|
18
|
Emel’yanova NS, Sanina NA, Aldoshin SM. Quantum chemical approaches to the study of Fe—S bond in Roussin’s red esters: replacement of functional ligands by glutathione. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Duangprompo W, Aree K, Itharat A, Hansakul P. Effects of 5,6-Dihydroxy-2,4-Dimethoxy-9,10-Dihydrophenanthrene on G2/M Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1473-1490. [DOI: 10.1142/s0192415x16500828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
5,6-dihydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene (HMP) is an active compound isolated from the rhizome extracts of Dioscorea membranacea Pierre, a Thai medicinal plant. This study aimed to investigate the growth-inhibitory and apoptosis-inducing effects of HMP in human lung cancer A549 cells. The antiproliferative and cytotoxic effects of HMP were analyzed by a Sulforhodamine B assay. Cell division, cell cycle distribution and membrane asymmetry changes were each performed with different fluorescent dyes and then analyzed by flow cytometry. Real-time PCR and immunoblotting were used to detect cell cycle- and apoptosis-related mRNA levels and proteins, respectively. The nuclear morphology of the cells stained with DAPI and DNA fragmentation were detected by fluorescence microscopy and gel electrophoresis, respectively. The results showed that HMP exerted strong antiproliferative and cytotoxic activities in A549 cells with the highest selectivity index. It halted the cell cycle in [Formula: see text]/M phase via down-regulation of the expression levels of regulatory proteins Cdc25C, Cdk1 and cyclinB1. In addition, HMP induced early apoptotic cells with externalized phosphatidylserine and subsequent apoptotic cells in sub-[Formula: see text] phase. HMP increased caspase-3 activity and levels of the cleaved (active) form of caspase-3 whose actions were supported by the cleavage of its target PARP, nuclear condensation and DNA apoptotic ladder. Moreover, HMP significantly increased the mRNA and protein levels of proapoptotic Bax as well as promoted subsequent caspase-9 activation and BID cleavage, indicating HMP-induced apoptosis via both intrinsic and extrinsic pathways. These data support, for the first time, the potential role of HMP as a cell-cycle arrest and apoptosis-inducing agent for lung cancer treatment.
Collapse
Affiliation(s)
- Wipada Duangprompo
- Biochemistry and Molecular Biology, Department of Preclinical Science, Faculty of Medicine, Thailand
| | - Kalaya Aree
- Microbiology and Immunology, Department of Preclinical Science, Faculty of Medicine, Thailand
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thailand
| | - Pintusorn Hansakul
- Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Thailand
| |
Collapse
|
20
|
Varlamov AV, Paltseva EM, Sekacheva MI, Fedorov DN, Skipenko OG. [Impact of preoperative drug therapy on the expression of apoptosis markers in colorectal liver metastases]. Arkh Patol 2016; 78:25-31. [PMID: 26978233 DOI: 10.17116/patol201678125-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to estimate the expression of p53 protein, effector caspases-3 and -7, and the antiapoptotic protein survivin in colorectal adenocarcinoma metastases to the liver in patients who have received preoperative cytotoxic and combined cytotoxic and target anti-VEGF therapies. SUBJECTS AND METHODS Intraoperative samples from 122 patients with colorectal carcinoma metastases to the liver were immunohistologically examined. The investigation included patients who had received preoperative treatment with cytotoxic drugs, combined cytotoxic and targeted anti-VEGF therapy. A control group consisted of patients who had not received preoperative anti-tumor drug treatment. RESULTS Expression of Caspase 3, including that of survivin, was significantly more frequently detected in the patients who had received combined cytotoxic and anti-VEGF therapy as compared to both those treated with only cytotoxic agents (p=0.00004) and the control group (p=0.0008) As compared to the latter, the women who had received cytotoxic therapy were found to have no survivin expression (p=0.015). Investigation of the expression of caspase-7 and p53 revealed no statistically significant differences between the three groups. CONCLUSION Addition of bevacizumab to preoperative standard therapy regimens for colorectal adenocarcinoma metastases to the liver leads to activated apoptosis in tumor cells, by enhancing the expression of effector caspase 3. At the same time, standard cytotoxic chemotherapy regimens in women results in activated apoptosis, by decreasing the expression of the antiapoptotic protein survivin.
Collapse
Affiliation(s)
- A V Varlamov
- Academician B.V. Petrovsky Russian Surgery Research Center, Moscow, Russia; Research Institute of Human Morphology, Moscow, Russia
| | - E M Paltseva
- Academician B.V. Petrovsky Russian Surgery Research Center, Moscow, Russia
| | - M I Sekacheva
- Academician B.V. Petrovsky Russian Surgery Research Center, Moscow, Russia
| | - D N Fedorov
- Academician B.V. Petrovsky Russian Surgery Research Center, Moscow, Russia
| | - O G Skipenko
- Academician B.V. Petrovsky Russian Surgery Research Center, Moscow, Russia
| |
Collapse
|
21
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
22
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
23
|
Rzheshevsky AV. Decrease in ATP biosynthesis and dysfunction of biological membranes. Two possible key mechanisms of phenoptosis. BIOCHEMISTRY (MOSCOW) 2015; 79:1056-68. [PMID: 25519064 DOI: 10.1134/s0006297914100071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic syndrome is extremely prevalent in the world and can be considered as one of main factors leading to accelerated aging and premature death. This syndrome may be closely linked with age-related disruptions in hypothalamic-pituitary system function, which perhaps represent a trigger mechanism of development of endocrine and cardiovascular pathologies. Age-related elevation of the sensitivity threshold of the hypothalamus to regulatory signals in association with low mobility and excessive diet trigger a cascade of biochemical reactions that might be used for activation of programmed death of the organism - phenoptosis. Accumulation of fatty acids in a cell and resulting lipotoxicity include resistance to insulin and leptin, endoplasmic reticulum stress, uncoupling of oxidation and phosphorylation, and dysfunction of biological membranes. Decrease in ATP synthesis is correlated with accumulation of calcium ions in cells, dysfunction of mitochondria, and increasing apoptotic activity. Age-related activation of mTOR (which is greatly influenced by excess energy substrates) has deleterious impact on one of the main mechanisms of cell defense by which defective mitochondria are replaced: mitophagy and biogenesis of mitochondria will be suppressed, and this will increase in greater degree mitochondrial dysfunction and oxidative stress. Fatty acid-induced inflammation will increase activity of nuclear factor NF-κB, the well-known stimulator of age-related pathologies. The final stage of phenoptosis can be represented by endothelium dysfunction related with oxidative stress, insulin resistance, and the most prevalent cardiovascular pathologies.
Collapse
Affiliation(s)
- A V Rzheshevsky
- Center for Rehabilitation Medicine, Dnepropetrovsk, 49000, Ukraine.
| |
Collapse
|
24
|
Zhong H, Chen G, Jukofsky L, Geho D, Han SW, Birzele F, Bader S, Himmelein L, Cai J, Albertyn Z, Rothe M, Essioux L, Burtscher H, Middleton SA, Rueger R, Chen LC, Dangl M, Nichols G, Pierceall WE. MDM2 antagonist clinical response association with a gene expression signature in acute myeloid leukaemia. Br J Haematol 2015; 171:432-5. [PMID: 25855517 DOI: 10.1111/bjh.13411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hua Zhong
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA.
| | - Gong Chen
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Lori Jukofsky
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - David Geho
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Sung Won Han
- Division of Biostatistics, Departments of Population Health, New York University School of Medicine, New York, NY, USA
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Sabine Bader
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Lucia Himmelein
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - James Cai
- Informatics, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Zayed Albertyn
- Informatics, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Mark Rothe
- Biometrics, Product Development, Roche Innovation Center New York, New York, NY, USA
| | - Laurent Essioux
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Helmut Burtscher
- Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Steven A Middleton
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Ruediger Rueger
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Lin-Chi Chen
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Markus Dangl
- Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Gwen Nichols
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - William E Pierceall
- Translational Medicine Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| |
Collapse
|
25
|
Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine. Bioinorg Chem Appl 2014; 2014:641407. [PMID: 24790592 PMCID: PMC3984828 DOI: 10.1155/2014/641407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/15/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I) k1 = (4.6 ± 0.1)·10−3 s−1 and the elimination rate constant of the penicillamine ligand k2 = (1.8 ± 0.2)·10−3 s−1 at 25°C in 0.05 M phosphate buffer, pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS− during decomposition of 1.5·10−4 M (I) in the presence of 10−3 M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.
Collapse
|
26
|
Quantum chemical modeling of ligand substitution in cationic nitrosyl iron complexes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Leblond F, Poirier S, Yu C, Duquette N, Mayer G, Thorin E. The anti-hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice. PLoS One 2014; 9:e92394. [PMID: 24647794 PMCID: PMC3960235 DOI: 10.1371/journal.pone.0092394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/21/2014] [Indexed: 01/12/2023] Open
Abstract
Aims To demonstrate that p53 modulates endothelial function and the stress response to a high-fat western diet (WD). Methods and Results Three-month old p53+/+ wild type (WT) and p53+/− male mice were fed a regular or WD for 3 months. Plasma levels of total cholesterol (TC) and LDL-cholesterol were significantly elevated (p<0.05) in WD-fed WT (from 2.1±0.2 mmol/L to 3.1±0.2, and from 0.64±0.09 mmol/L to 1.25±0.11, respectively) but not in p53+/− mice. The lack of cholesterol accumulation in WD-fed p53+/− mice was ass–ociated with high bile acid plasma concentrations (p53+/− = 4.7±0.9 vs. WT = 3.3±0.2 μmol/L, p<0.05) concomitant with an increased hepatic 7-alpha-hydroxylase mRNA expression. While the WD did not affect aortic endothelial relaxant function in p53+/− mice (WD = 83±5 and RD = 82±4% relaxation), it increased the maximal response to acetylcholine in WT mice (WD = 87±2 vs. RD = 62±5% relaxation, p<0.05) to levels of p53+/−. In WT mice, the rise in TC associated with higher (p<0.05) plasma levels of pro-inflammatory keratinocyte-derived chemokine, and an over-activation (p<0.05) of the relaxant non-nitric oxide/non-prostacyclin endothelial pathway. It is likely that in WT mice, activations of these pathways are adaptive and contributed to maintain endothelial function, while the WD neither promoted inflammation nor affected endothelial function in p53+/− mice. Conclusions Our data demonstrate that low endogenous p53 expression prevents the rise in circulating levels of cholesterol when fed a WD. Consequently, the endothelial stress of hypercholesterolemia is absent in young p53+/− mice as evidenced by the absence of endothelial adaptive pathway over-activation to minimize stress-related damage.
Collapse
Affiliation(s)
- Francois Leblond
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Steve Poirier
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Carol Yu
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Natacha Duquette
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Gaetan Mayer
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
Khutornenko AA, Dalina AA, Chernyak BV, Chumakov PM, Evstafieva AG. The Role of Dihydroorotate Dehydrogenase in Apoptosis Induction in Response to Inhibition of the Mitochondrial Respiratory Chain Complex III. Acta Naturae 2014; 6:69-75. [PMID: 24772329 PMCID: PMC3999468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mechanism for the induction of programmed cell death (apoptosis) upon dysfunction of the mitochondrial respiratory chain has been studied. Previously, we had found that inhibition of mitochondrial cytochrome bc1, a component of the electron transport chain complex III, leads to activation of tumor suppressor p53, followed by apoptosis induction. The mitochondrial respiratory chain is coupled to the de novo pyrimidine biosynthesis pathway via the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH). The p53 activation induced in response to the inhibition of the electron transport chain complex III has been shown to be triggered by the impairment of the de novo pyrimidine biosynthesis due to the suppression of DHODH. However, it remained unclear whether the suppression of the DHODH function is the main cause of the observed apoptotic cell death. Here, we show that apoptosis in human colon carcinoma cells induced by the mitochondrial respiratory chain complex III inhibition can be prevented by supplementation with uridine or orotate (products of the reaction catalyzed by DHODH) rather than with dihydroorotate (a DHODH substrate). We conclude that apoptosis is induced in response to the impairment of the de novo pyrimidine biosynthesis caused by the inhibition of DHODH. The conclusion is supported by the experiment showing that downregulation of DHODH by RNA interference leads to accumulation of the p53 tumor suppressor and to apoptotic cell death.
Collapse
Affiliation(s)
- A. A. Khutornenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 40, 119991, Moscow, Russia
| | - A. A. Dalina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, 119991, Moscow, Russia
| | - B. V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 40, 119991, Moscow, Russia
| | - P. M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, 119991, Moscow, Russia
| | - A. G. Evstafieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 40, 119991, Moscow, Russia,Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 73, 119991, Moscow, Russia
| |
Collapse
|
29
|
Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases. Br J Nutr 2013; 110:699-710. [PMID: 23402272 DOI: 10.1017/s0007114512005752] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diosmin (DM) is a naturally occurring flavone and has been found to possess numerous therapeutic properties. In this study, we used DM as a protective agent against the nephrotoxic effects of the environmental toxicant trichloroethylene (TCE). Male Wistar rats were divided into five groups (I-V, n 6). Groups II, III and IV received an oral administration of TCE at a dose of 1000 mg/kg body weight for twenty consecutive days. The animals in groups II and III received an oral treatment of DM at doses of 20 and 40 mg/kg body weight, respectively, for twenty consecutive days, while groups I and V were given maize oil (5 ml/kg body weight and DM 40 mg/kg body weight, respectively) for 20 d. The protective effects of DM on TCE-induced oxidative stress and caspase-dependent apoptosis were investigated by assaying oxidative stress biomarkers, lipid peroxidation (LPO), serum toxicity markers, alkaline unwinding assay, caspase-3, -7 and -9, Bax and p53 expression. Oral administration of TCE in rats enhanced renal LPO, depleted glutathione content and antioxidant enzymes, induced DNA strand breaks (P<0·001), modulated the expression of Bax and p53 protein and induced the expression of caspase-3, -7 and -9. Co-treatment with DM prevented oxidative stress by restoring the levels of antioxidant enzymes; furthermore, a significant dose-dependent decrease in DNA disintegration and kidney toxicity markers such as blood urea N, creatinine, lactate dehydrogenase and kidney injury molecule-1 was observed. DM also effectively decreased the TCE-induced up-regulation of Bax and p53. Data from the present study establish the protective role of DM against TCE-induced renal damage.
Collapse
|
30
|
Ajakaiye MA, Jacob A, Wu R, Yang WL, Nicastro J, Coppa GF, Wang P. Recombinant human MFG-E8 attenuates intestinal injury and mortality in severe whole body irradiation in rats. PLoS One 2012; 7:e46540. [PMID: 23056336 PMCID: PMC3466304 DOI: 10.1371/journal.pone.0046540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
The gastrointestinal (GI) syndrome component of acute radiation syndrome (ARS) results from depletion of immature parenchymal stem cells after high dose irradiation and contributes significantly to early mortality. It is associated with severe, irreparable damage in the GI tract and extremely low survival. There is a need for the development of viable mitigators of whole body irradiation (WBI) due to the possibility of unexpected high level radiation exposure from nuclear accidents or attacks. We therefore examined the effect of recombinant human milk fat globule-EGF factor 8 (rhMFG-E8) in mitigating damage after WBI. Male Sprague-Dawley rats were exposed to 10 Gy WBI using Cesium-137 as the radiation source. The animals in the treatment group received rhMFG-E8 (166 µg/kg BW) subcutaneously once a day with the first dose given 6 h after WBI. Blood and tissue samples from the ileum were collected after 3 days of treatment. A separate cohort of animals was treated for 7 days and the 21 day mortality rate was determined. Treatment with rhMFG-E8 significantly improved the survival from 31% to 75% over 21 days. Furthermore, rhMFG-E8 treatment resulted in a 36% reduction in the radiation injury intestinal mucosal damage score, corresponding to visible histological changes. MFG-E8 gene expression was significantly decreased in WBI-induced animals as compared to sham controls. Treatment with rhMFG-E8 increased p53 and p21 expression by 207% and 84% compared to untreated controls. This was accompanied by an 80% increase in the expression of anti-apoptotic cell regulator Bcl-2. p53 and p21 levels correlate with improved survival after radiation injury. These cell regulators arrest the cell after DNA damage and enable DNA repair as well as optimize cell survival. Taken together, these results indicate that rhMFG-E8 ameliorates the GI syndrome and improves survival after WBI by minimizing intestinal cell damage and optimizing recovery.
Collapse
Affiliation(s)
- Michael A. Ajakaiye
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Rongqian Wu
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Weng Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Jeffrey Nicastro
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Gene F. Coppa
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Svyatchenko VA, Tarasova MV, Netesov SV, Chumakov PM. Oncolytic adenoviruses in anticancer therapy: Current status and prospects. Mol Biol 2012. [DOI: 10.1134/s0026893312040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Hawkes WC, Printsev I, Alkan Z. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells. J Cell Biochem 2012; 113:61-9. [PMID: 21866568 DOI: 10.1002/jcb.23328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The main form of Se in animal tissues is selenocysteine in selenoproteins, but the relative importance of selenoproteins versus smaller Se compounds in cancer protection is unresolved. Selenoprotein W (SEPW1) is a highly conserved protein ubiquitously expressed in animals, bacteria, and archaea. SEPW1 depletion causes a delay in cell cycle progression at the G1/S transition of the cell cycle in breast and prostate epithelial cells. Tumor suppressor protein p53 is a master regulator of cell cycle progression and is the most frequently mutated gene in human cancers. p53 was increased in SEPW1 silenced cells and was inversely correlated with SEPW1 mRNA in cell lines with altered SEPW1 expression. Silencing SEPW1 decreased ubiquitination of p53 and increased p53 half-life. SEPW1 silencing increased p21(Cip1/WAF1/CDKN1A), while p27 (Kip1/CDKN1B) levels were unaffected. G1-phase arrest from SEPW1 knockdown was abolished by silencing p53 or p21. Cell cycle arrest from SEPW1 silencing was not associated with activation of ATM or phosphorylation of Ser-15 in p53, suggesting the DNA damage response pathway was not involved. Silencing GPX1 had no effect on cell cycle, suggesting that G1-phase arrest from SEPW1 silencing was not due to loss of antioxidant protection. More research is required to identify the function of SEPW1 and how it affects stability of p53.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, California 95616, USA.
| | | | | |
Collapse
|
33
|
Zhao J, Lu Y, Shen HM. Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 2011; 314:8-23. [PMID: 22030255 DOI: 10.1016/j.canlet.2011.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/18/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been intensively studied as a cancer therapeutic agent due to its unique ability to induce apoptosis in malignant cells but not in normal cells. However, as more human cancer cells are reported to be resistant to TRAIL treatment, it is important to develop new therapeutic strategies to overcome this resistance. p53 is an important tumor suppressor that is widely involved in cellular responses to various stresses. In this mini-review, we aim to provide an overview of the intricate relationship between p53 and the TRAIL-mediated apoptosis pathway, and to summarize the current approaches of targeting p53 as a therapeutic strategy to sensitize TRAIL-induced apoptosis in human cancer cells. Although in some cases TRAIL kills cancer cells in a p53-independent manner, it is believed that in cancers with wild-type and functional p53, targeting p53 may be an important strategy for overcoming TRAIL-resistance in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, Republic of Singapore
| | | | | |
Collapse
|
34
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. BIOCHEMISTRY (MOSCOW) 2010; 75:535-48. [PMID: 20632931 DOI: 10.1134/s0006297910050019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the "histone code". Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the "histone code". This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear "reader" proteins that possess different chromatin-modifying activities.
Collapse
Affiliation(s)
- K S Egorova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | |
Collapse
|
36
|
p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010; 6:309-22. [PMID: 20362536 DOI: 10.1016/j.stem.2010.03.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 12/16/2022]
Abstract
Cell competition was originally described in Drosophila as a process for selection of the fittest cells. It is likely to play an important role in tissue homeostasis in all metazoans, but little is known about its role and regulation in mammals. By using genetic mosaic mouse models and bone marrow chimeras, we describe here a form of cell competition that selects for the least damaged cells. This competition is controlled by p53 but is distinct from the classical p53-mediated DNA damage response: it persists for months, is specific to the hematopoietic stem and progenitor cells, and depends on the relative rather than absolute level of p53 in competing cells. The competition appears to be mediated by a non-cell-autonomous induction of growth arrest and senescence-related gene expression in outcompeted cells with higher p53 activity. p53-mediated cell competition of this type could potentially contribute to the clonal expansion of incipient cancer cells.
Collapse
|
37
|
Stanga S, Lanni C, Govoni S, Uberti D, D'Orazi G, Racchi M. Unfolded p53 in the pathogenesis of Alzheimer's disease: is HIPK2 the link? Aging (Albany NY) 2010; 2:545-54. [PMID: 20876941 PMCID: PMC2984604 DOI: 10.18632/aging.100205] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
p53 transcriptional activity depends mainly on posttranslational modifications and protein/protein interaction. Another important mechanism that controls p53 function is its conformational stability since p53 is an intrinsically unstable protein. An altered conformational state of p53, independent from point mutations, has been reported in tissues from patients with Alzheimer's disease (AD), leading to an impaired and dysfunctional response to stressors. Recent evidence shows that one of the activators that induces p53 posttranslational modification and wild-type conformational stability is homeodomain interacting protein kinase 2 (HIPK2). Hence, conditions that induce HIPK2 deregulation would result in a dysfunctional response to stressors by affecting p53 activity. Discovering the mechanisms of HIPK2 activation/inhibition and the ways to manipulate HIPK2 activity are an interesting option to affect several biological pathways, including those underlying AD. Soluble beta-amyloid peptides have recently been involved in HIPK2 degradation, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus, before triggering the amyloidogenic cascade. Here we discuss about these findings and the potential relevance of HIPK2 as a target for AD and highlight the existence of a novel amyloid-based mechanism in AD potentially leading to the survival of injured dysfunctional cells.
Collapse
Affiliation(s)
- Serena Stanga
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Italy
| | - Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Italy
| | - Stefano Govoni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Italy
| | - Gabriella D'Orazi
- Department of Oncology and Experimental Medicine, School of Medicine, University “G. d'Annunzio”, 66100 Chieti, Italy
- Molecular Oncogenesis Laboratory, National Cancer Institute “Regina Elena”, 00158 Rome, Italy
| | - Marco Racchi
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Italy
| |
Collapse
|
38
|
Salminen A, Kaarniranta K. Genetics vs. entropy: longevity factors suppress the NF-kappaB-driven entropic aging process. Ageing Res Rev 2010; 9:298-314. [PMID: 19903538 DOI: 10.1016/j.arr.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023]
Abstract
Molecular studies in model organisms have identified potent longevity genes which can delay the aging process and extend the lifespan. Longevity factors promote stress resistance and cellular survival. It seems that the aging process itself is not genetically programmed but a random process involving the loss of molecular fidelity and subsequent accumulation of waste products. This age-related increase in cellular entropy is compatible with the disposable soma theory of aging. A large array of host defence systems has been linked to the NF-kappaB system which is an ancient signaling pathway specialized to host defence, e.g. functioning in immune system. Emerging evidence demonstrates that the NF-kappaB system is activated during aging. Oxidative stress and DNA damage increase with aging and elicit a sustained activation of the NF-kappaB system which has negative consequences, e.g. chronic inflammatory response, increase in apoptotic resistance, decline in autophagic cleansing, and tissue atrophy, i.e. processes that enhance the aging process. We will discuss the role of NF-kappaB system in the pro-aging signaling and will emphasize that several longevity factors seem to be inhibitors of NF-kappaB signaling and in that way they can suppress the NF-kappaB-driven entropic host defence catastrophe.
Collapse
|
39
|
Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci U S A 2010; 107:12828-33. [PMID: 20566882 DOI: 10.1073/pnas.0910885107] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While many functions of the p53 tumor suppressor affect mitochondrial processes, the role of altered mitochondrial physiology in a modulation of p53 response remains unclear. As mitochondrial respiration is affected in many pathologic conditions such as hypoxia and intoxications, the impaired electron transport chain could emit additional p53-inducing signals and thereby contribute to tissue damage. Here we show that a shutdown of mitochondrial respiration per se does not trigger p53 response, because inhibitors acting in the proximal and distal segments of the respiratory chain do not activate p53. However, strong p53 response is induced specifically after an inhibition of the mitochondrial cytochrome bc1 (the electron transport chain complex III). The p53 response is triggered by the deficiency in pyrimidines that is developed due to a suppression of the functionally coupled mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). In epithelial carcinoma cells the activation of p53 in response to mitochondrial electron transport chain complex III inhibitors does not require phosphorylation of p53 at Serine 15 or up-regulation of p14(ARF). Instead, our data suggest a contribution of NQO1 and NQO2 in stabilization of p53 in the nuclei. The results establish the deficiency in pyrimidine biosynthesis as the cause of p53 response in the cells with impaired mitochondrial respiration.
Collapse
|
40
|
Abstract
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| | - Zeynep Alkan
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| |
Collapse
|
41
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
42
|
Turoverov KK, Kuznetsova IM, Uversky VN. The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:73-84. [PMID: 20097220 DOI: 10.1016/j.pbiomolbio.2010.01.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/16/2010] [Indexed: 11/19/2022]
Abstract
The native state of a protein is usually associated with a compact globular conformation possessing a rigid and highly ordered structure. At the turn of the last century certain studies arose which concluded that many proteins cannot, in principle, form a rigid globular structure in an aqueous environment, but they are still able to fulfill their specific functions--i.e., they are native. The existence of the disordered regions allows these proteins to interact with their numerous binding partners. Such interactions are often accompanied by the formation of complexes that possess a more ordered structure than the original components. The functional diversity of these proteins, combined with the variability of signals related to the various intra- and intercellular processes handled by these proteins and their capability to produce multi-variant and multi-directional responses allow them to form a unique regulatory net in a cell. The abundance of disordered proteins inside the cell is precisely controlled at the synthesis and clearance levels as well as via interaction with specific binding partners and post-translational modifications. Another recently recognized biologically active state of proteins is the functional amyloid. The formation of such functional amyloids is tightly controlled and therefore differs from the uncontrolled formation of pathogenic amyloids which are associated with the pathogenesis of several conformational diseases, the development of which is likely to be determined by the failures of the cellular regulatory systems rather than by the formation of the proteinaceous deposits and/or by the protofibril toxicity.
Collapse
Affiliation(s)
- Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia.
| | | | | |
Collapse
|
43
|
Weems JM, Cutler NS, Moore C, Nichols WK, Martin D, Makin E, Lamb JG, Yost GS. 3-Methylindole is mutagenic and a possible pulmonary carcinogen. Toxicol Sci 2009; 112:59-67. [PMID: 19700606 DOI: 10.1093/toxsci/kfp201] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous work has shown that bioactivation of the cigarette smoke pneumotoxicant 3-methylindole (3MI) by pulmonary cytochrome P450 enzymes is directly associated with formation of DNA adducts. Here, we present evidence that normal human lung epithelial cells, exposed to low micromolar concentrations of 3MI, showed extensive DNA damage, as measured by the comet assay, with similar potency to the prototypical genotoxic agents, doxorubicin and irinotecan. The DNA damage caused by 3MI was predominantly caused by single-strand breaks. Furthermore, we show that this damage decreased with time, given a subtoxic concentration, with detectable DNA fragmentation peaking 4 h after exposure and diminishing to untreated levels within 24 h. Pretreatment with an inhibitor of poly(ADP-ribose) polymerase 1 (PARP1), NU1025, nearly doubled the DNA damage produced by 5 microM 3MI, implying that PARP1, which among other activities, functions to repair single-strand breaks in DNA, repaired at least some of the 3MI-induced DNA fragmentation. A key cellular response to DNA damage, phosphorylation, and nuclear localization of p53 was seen at subtoxic levels of 3MI exposure. 3MI was highly mutagenic, with essentially the same potency as the prototype carcinogen, benzo[a]pyrene, only when a lung-expressed CYP2F3 enzyme was used to dehydrogenate 3MI to its putative DNA-alkylating intermediate. Conversely, a rat liver S9 metabolic system did not bioactivate 3MI to its mutagenic intermediate(s). Concentrations higher than 25 microM caused apoptosis, which became extensive at 100 microM, similar to the response seen with 10 microM doxorubicin. Our findings indicate that there is a low concentration window in which 3MI can cause extensive DNA damage and mutation, without triggering apoptotic defenses, reinforcing the hypothesis that inhaled 3MI from cigarette smoke may be a potent lung-selective carcinogen.
Collapse
Affiliation(s)
- Jessica M Weems
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mészáros B, Simon I, Dosztányi Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 2009; 5:e1000376. [PMID: 19412530 PMCID: PMC2671142 DOI: 10.1371/journal.pcbi.1000376] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/30/2009] [Indexed: 12/24/2022] Open
Abstract
Many disordered proteins function via binding to a structured partner and undergo
a disorder-to-order transition. The coupled folding and binding can confer
several functional advantages such as the precise control of binding specificity
without increased affinity. Additionally, the inherent flexibility allows the
binding site to adopt various conformations and to bind to multiple partners.
These features explain the prevalence of such binding elements in signaling and
regulatory processes. In this work, we report ANCHOR, a method for the
prediction of disordered binding regions. ANCHOR relies on the pairwise energy
estimation approach that is the basis of IUPred, a previous general disorder
prediction method. In order to predict disordered binding regions, we seek to
identify segments that are in disordered regions, cannot form enough favorable
intrachain interactions to fold on their own, and are likely to gain stabilizing
energy by interacting with a globular protein partner. The performance of ANCHOR
was found to be largely independent from the amino acid composition and adopted
secondary structure. Longer binding sites generally were predicted to be
segmented, in agreement with available experimentally characterized examples.
Scanning several hundred proteomes showed that the occurrence of disordered
binding sites increased with the complexity of the organisms even compared to
disordered regions in general. Furthermore, the length distribution of binding
sites was different from disordered protein regions in general and was dominated
by shorter segments. These results underline the importance of disordered
proteins and protein segments in establishing new binding regions. Due to their
specific biophysical properties, disordered binding sites generally carry a
robust sequence signal, and this signal is efficiently captured by our method.
Through its generality, ANCHOR opens new ways to study the essential functional
sites of disordered proteins. Intrinsically unstructured/disordered proteins (IUPs/IDPs) do not adopt a stable
structure in isolation but exist as a highly flexible ensemble of conformations.
Despite the lack of a well-defined structure these proteins carry out important
functions. Many IUPs/IDPs function via binding specifically to other
macromolecules that involves a disorder-to-order transition. The molecular
recognition functions of IUPs/IDPs include regulatory and signaling interactions
where binding to multiple partners and high-specificity/low-affinity
interactions play a crucial role. Due to their specific functional and
structural properties, these binding regions have distinct properties compared
to both globular proteins and disordered regions in general. Here, we present a
general method to identify disordered binding regions from the amino acid
sequence. Our method targets the essential feature of these regions: they behave
in a characteristically different manner in isolation than bound to their
partner protein. This prediction method allows us to compare the binding
properties of short and long binding sites. The evolutionary relationship
between the amount of disordered binding regions and general disordered regions
in various organisms was also analyzed. Our results suggest that disordered
binding regions can be recognized even without taking into account their adopted
secondary structure or their specific binding partner.
Collapse
Affiliation(s)
- Bálint Mészáros
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
| | - István Simon
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
45
|
Connell KA, Guess MK, Chen HW, Lynch T, Bercik R, Taylor HS. HOXA11 promotes fibroblast proliferation and regulates p53 in uterosacral ligaments. Reprod Sci 2009; 16:694-700. [PMID: 19372592 DOI: 10.1177/1933719109334260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The uterosacral ligaments (USLs) are key support structures of the uterus and upper vagina. Previously, we have shown that HOXA11 is necessary for the development of the USLs, is deficient in women with pelvic organ prolapse (POP) and regulates expression of extracellular matrix (ECM) proteins. Here we sought to determine if HOXA11 regulates cell proliferation in the USLs in women. Like others, we have found that, there is decreased cellularity in prolapsed USLs compared to USLs in women with normal pelvic support. We have also demonstrated that HOXA11 promotes cell proliferation in murine fibroblasts and primary human USL cells in vitro. These findings support a relationship between HOXA11 expression, rates of proliferation and phenotypic abnormalities in the USL. Based on these findings, we sought to determine if HOXA11 regulates p53, a tumor suppressor gene which controls progression through the cell cycle and regulates ECM genes. We have demonstrated that expression of HOXA11 represses expression of p53, suggesting a mechanism by which HOXA11 regulates of the morphology and integrity of the USLs. A better understanding of the influence of these genes on the homeostasis of the ECM and interactions with each other may prove beneficial in defining the underlying etiologies of the development of POP and aid in the development of new treatment options for women with this disorder.
Collapse
Affiliation(s)
- Kathleen A Connell
- Department of Obstetrics, Division of Urogynecology & Reconstructive Pelvic Surgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Agapova LS, Chernyak BV, Domnina LV, Dugina VB, Efimenko AY, Fetisova EK, Ivanova OY, Kalinina NI, Khromova NV, Kopnin BP, Kopnin PB, Korotetskaya MV, Lichinitser MR, Lukashev AL, Pletjushkina OY, Popova EN, Skulachev MV, Shagieva GS, Stepanova EV, Titova EV, Tkachuk VA, Vasiliev JM, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. BIOCHEMISTRY (MOSCOW) 2009; 73:1300-16. [DOI: 10.1134/s0006297908120031] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB. An attempt to prevent senescence: a mitochondrial approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:437-61. [PMID: 19159610 DOI: 10.1016/j.bbabio.2008.12.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 12/14/2022]
Abstract
Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobyevy Gory 1, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Olovnikov IA, Kravchenko JE, Chumakov PM. Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 2008; 19:32-41. [PMID: 19101635 DOI: 10.1016/j.semcancer.2008.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 12/19/2022]
Abstract
The p53 tumor suppressor plays pivotal role in the organism by supervising strict compliance of individual cells to needs of the whole organisms. It has been widely accepted that p53 acts in response to stresses and abnormalities in cell physiology by mobilizing the repair processes or by removing the diseased cells through initiating the cell death programs. Recent studies, however, indicate that even under normal physiological conditions certain activities of p53 participate in homeostatic regulation of metabolic processes and that these activities are important for prevention of cancer. These novel functions of p53 help to align metabolic processes with the proliferation and energy status, to maintain optimal mode of glucose metabolism and to boost the energy efficient mitochondrial respiration in response to ATP deficiency. Additional activities of p53 in non-stressed cells tune up the antioxidant defense mechanisms reducing the probability of mutations caused by DNA oxidation under conditions of daily stresses. The deficiency in the p53-mediated regulation of glycolysis and mitochondrial respiration greatly accounts for the deficient respiration of the predominance of aerobic glycolysis in cancer cells (the Warburg effect), while the deficiency in the p53-modulated antioxidant defense mechanisms contributes to mutagenesis and additionally boosts the carcinogenesis process.
Collapse
|