1
|
Imamichi Y, Hikosaka K, Kawai N, Koubaku N, Hosoi M, Mizuta S, Yokoyama Y. Purification, characterization and cDNA cloning of a lectin from the brittle star Ophioplocus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110757. [PMID: 35644319 DOI: 10.1016/j.cbpb.2022.110757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
Lectins are carbohydrate-binding proteins that possess specific sugar-binding properties and are involved in various biological activities in different organisms. In this study, purification, characterization, and cDNA cloning of a brittle star lectin, designated as Ophioplocus japonicus agglutinin (OJA), were conducted. OJA was isolated from the brittle star O. japonicus by affinity chromatography on a Sephadex G-25 column, followed by ion-exchange chromatography on a Resource Q column. This lectin yielded distinct bands at approximately 176 or 17 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing or reducing conditions, respectively. It also exhibited Ca2+-dependent hemagglutination activity, which, however, was not affected by other metal cations, such as Ba2+, Co2+, Cu2+, Zn2+, Fe2+, Mg2+, and Mn2+. The OJA activity was strongly inhibited by glucose and xylose among the monosaccharides tested, and by bovine thyroglobulin among the glycoproteins tested. Cloning of the OJA cDNA revealed that its primary structure contained the C-type lectin domain (CTLD). The results of this study showed that OJA is an echinoderm-derived glucose/xylose-specific lectin that belongs to the C-type lectin superfamily.
Collapse
Affiliation(s)
- Yoshitaka Imamichi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Kensuke Hikosaka
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Naoki Kawai
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Naruchika Koubaku
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Masatomi Hosoi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Shoshi Mizuta
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Yoshihiro Yokoyama
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| |
Collapse
|
2
|
Antiproliferative and Antimicrobial Potentials of a Lectin from Aplysia kurodai (Sea Hare) Eggs. Mar Drugs 2021; 19:md19070394. [PMID: 34356819 PMCID: PMC8306185 DOI: 10.3390/md19070394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.
Collapse
|
3
|
Menéndez-Rey A, González-Martos R, Ye P, Quiroz-Troncoso J, Alegría-Aravena N, Sánchez-Díez M, Maestu-Unturbe C, Bensadon-Naeder L, Ramírez-Castillejo C. Quantification of lectins in Synsepalum dulcificum and comparison with reference foods. Food Chem 2021; 352:129341. [PMID: 33657483 DOI: 10.1016/j.foodchem.2021.129341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
A healthy life means a balance between physical activity and a diet rich in fruits and vegetables, however, some plant-based foods can have certain adverse effects due to the presence of anti-nutritional factors, such as lectins, capable of binding molecules and preventing their normal assimilation. The level of lectins in Synsepalum dulcificum fruit was determined by hemagglutination assays in human blood, and its comparison with foods characterized as having high and low lectin content. The relative hemagglutinating activity of berries from Synsepalum dulcificum compared to our positive high lectin content food reference (Pinto bean) corresponds to 3.13-6.25%, representing safe levels for nutritional food.
Collapse
Affiliation(s)
- Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain.
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Peng Ye
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ceferino Maestu-Unturbe
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | | | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|
4
|
Defo MA, Douville M, Giraudo M, Brodeur P, Boily M, Houde M. RNA-sequencing to assess the health of wild yellow perch (Perca flavescens) populations from the St. Lawrence River, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1657-1668. [PMID: 30296762 DOI: 10.1016/j.envpol.2018.09.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to better understand in situ cumulative effects of anthropogenic stressors on the health of St. Lawrence River (QC, Canada) yellow perch populations using high-throughput transcriptomics and a multi-biological level approach. Fish were collected in the upstream fluvial Lake Saint-François (LSF) with low degree of environmental perturbations; Lake Saint-Louis (LSL) considered having a moderate degree of anthropogenic stressors, and Lake Saint-Pierre (LSP) a sector where the perch population has been severely declining. Morphometric results indicated that fish from the downstream LSP showed lower body condition compared to LSF and LSL. Liver transcriptomic responses were assessed by RNA-sequencing. Two hundred and eighty genes were over-transcribed in LSP perch while 200 genes were under-transcribed compared to LSF and LSL. In LSP fish, genes transcripts related to reproduction, retinol, iron, thyroid hormones, oxidative stress, lipid metabolism and immune functions were among the most abundant suggesting that multiple metabolic and physiological pathways were impacted by environmental stressors at this site. Inhibition of liver superoxide dismutase, catalase and glutathione S-transferase activities were also observed at the cellular level. Overall, identified impacted biological pathways in perch from LSP may help understand the precarious state of this population and identify the factors inhibiting its recovery.
Collapse
Affiliation(s)
- Michel A Defo
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100 rue Laviolette, Trois-Rivières, QC, G9A 5S9, Canada
| | - Monique Boily
- Groupe de Recherche en toxicologie de l'environnement (TOXEN). Département des sciences biologiques, Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| |
Collapse
|
5
|
Fujii Y, Gerdol M, Hasan I, Koide Y, Matsuzaki R, Ikeda M, Rajia S, Ogawa Y, Kawsar SMA, Ozeki Y. Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1717.1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuki Fujii
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste
| | - Imtiaj Hasan
- Department of Life and Environmental System Science, Yokohama City University
- Department of Biochemistry and Molecular Biology, University of Rajshahi
| | - Yasuhiro Koide
- Department of Life and Environmental System Science, Yokohama City University
| | - Risa Matsuzaki
- Department of Life and Environmental System Science, Yokohama City University
| | - Mayu Ikeda
- Department of Life and Environmental System Science, Yokohama City University
| | - Sultana Rajia
- Department of Life and Environmental System Science, Yokohama City University
- Department of Pharmacy, Faculty of Pharmacy, Varendra University
| | - Yukiko Ogawa
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - S. M. Abe Kawsar
- Department of Life and Environmental System Science, Yokohama City University
- Department of Chemistry, Faculty of Science, University of Chittagong
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Yokohama City University
| |
Collapse
|
6
|
Gonçalves GRF, Gandolfi ORR, Santos LS, Bonomo RCF, Veloso CM, Veríssimo LAA, Fontan RDCI. Immobilization of sugars in supermacroporous cryogels for the purification of lectins by affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:71-77. [DOI: 10.1016/j.jchromb.2017.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023]
|
7
|
Isolation, Amino Acid Sequences, and Plausible Functions of the Galacturonic Acid-Binding Egg Lectin of the Sea Hare Aplysia kurodai. Mar Drugs 2017; 15:md15060161. [PMID: 28574432 PMCID: PMC5484111 DOI: 10.3390/md15060161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022] Open
Abstract
Egg lectins occur in a variety of animals ranging from mollusks to vertebrates. A few examples of molluscan egg lectins have been reported, including that of the sea hare Aplysia kurodai; however, their biological functions in the egg remain unclarified. We report the isolation, determination of primary structure, and possible functions of A.kurodai lectin (AKL) from the egg mass of A. kurodai. We obtained AKL as an inseparable mixture of isoproteins with a relative molecular mass of approximately 32 kDa by affinity purification. The hemagglutinating activity of AKL against rabbit erythrocytes was inhibited most potently by galacturonic acid and moderately by xylose. Nucleotide sequencing of corresponding cDNA obtained by rapid amplification of cDNA ends (RACE) allowed us to deduce complete amino acid sequences. The mature polypeptides consisted of 218- or 219-amino acids with three repeated domains. The amino acid sequence had similarities to hypothetical proteins of Aplysia spp., or domain DUF3011 of uncharacterized bacterial proteins. AKL is the first member of the DUF3011 family whose function, carbohydrate recognition, was revealed. Treatment of the egg with galacturonic acid, an AKL sugar inhibitor, resulted in deformation of the veliger larvae, suggesting that AKL is involved in organogenesis in the developmental stage of A. kurodai.
Collapse
|
8
|
Carneiro RF, Torres RCF, Chaves RP, de Vasconcelos MA, de Sousa BL, Goveia ACR, Arruda FV, Matos MNC, Matthews-Cascon H, Freire VN, Teixeira EH, Nagano CS, Sampaio AH. Purification, Biochemical Characterization, and Amino Acid Sequence of a Novel Type of Lectin from Aplysia dactylomela Eggs with Antibacterial/Antibiofilm Potential. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:49-64. [PMID: 28150103 DOI: 10.1007/s10126-017-9728-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 106 M-1). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.
Collapse
Affiliation(s)
- Rômulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Renato Cézar Farias Torres
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Renata Pinheiro Chaves
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará, 60430-160, Brazil
| | - Bruno Lopes de Sousa
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará, 60440-970, Brazil
| | - André Castelo Rodrigues Goveia
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Francisco Vassiliepe Arruda
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará, 60430-160, Brazil
| | - Maria Nágila Carneiro Matos
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Helena Matthews-Cascon
- Laboratório de Invertebrados Marinhos do Ceará - LIMCE, Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, bloco 906, Fortaleza, CE, 60455-760, Brazil
| | - Valder Nogueira Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará, 60440-970, Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará, 60430-160, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Av. Mister Hull, Box 6043, Fortaleza, Ceará, 60440-970, Brazil.
| |
Collapse
|
9
|
Catfish rhamnose-binding lectin induces G 0/1 cell cycle arrest in Burkitt's lymphoma cells via membrane surface Gb3. Glycoconj J 2016; 34:127-138. [PMID: 27796613 DOI: 10.1007/s10719-016-9739-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 01/15/2023]
Abstract
Silurus asotus egg lectin (SAL), an α-galactoside-binding protein isolated from the eggs of catfish, is a member of the rhamnose-binding lectin family that binds to Gb3 glycan (Galα1-4Galβ1-4Glc). We have previously demonstrated that SAL reduces the proliferation of Gb3-expressing Burkitt's lymphoma Raji cells and confirm here that it does not reduce their viability, indicating that unlike other lectins, it is not cytotoxic. The aim of this study was to determine the signal transduction mechanism(s) underlying this novel SAL/Gb3 binding-mediated effect profile. SAL/Gb3 interaction arrested the cell cycle through increasing the G0/1 phase population of Raji cells. SAL suppressed the transcription of cell cycle-related factors such as c-MYC, cyclin D3, and cyclin-dependent protein kinase (CDK)-4. Conversely, the CDK inhibitors p21 and p27 were elevated by treatment with SAL. In particular, the production of p27 in response to SAL treatment increased steadily, whereas p21 production was maximal at 12 h and lower at 24 h. Activation of Ras-MEK-ERK pathway led to an increase in expression of p21. Notably, treatment of Raji cells with anti-Gb3 mAb alone did not produce the above effects. Taken together, our findings suggest that Gb3 on the Raji cell surface interacts with SAL to trigger sequential GDP-Ras phosphorylation, Ras-MEK-ERK pathway activation, p21 production, and cell cycle arrest at the G0/1 phase.
Collapse
|
10
|
Wang L, Yue F, Song X, Song L. Maternal immune transfer in mollusc. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:354-359. [PMID: 24858027 DOI: 10.1016/j.dci.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Maternal immunity refers to the immunity transferred from mother to offspring via egg, playing an important role in protecting the offspring at early life stages and contributing a trans-generational effect on offspring's phenotype. Because fertilization is external in most of the molluscs, oocytes and early embryos are directly exposed to pathogens in the seawater, and thus maternal immunity could provide a better protection before full maturation of their immunological systems. Several innate immune factors including pattern recognition receptors (PRRs) like lectins, and immune effectors like lysozyme, lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) and antioxidant enzymes have been identified as maternally derived immune factors in mollusc eggs. Among these immune factors, some maternally derived lectins and antibacterial factors have been proved to endue mollusc eggs with effective defense ability against pathogen infection, while the roles of other factors still remain untested. The physiological condition of mollusc broodstock has a profound effect on their offspring fitness. Many other factors such as nutrients, pathogens, environment conditions and pollutants could exert considerable influence on the maternal transfer of immunity. The parent molluscs which have encountered an immune stimulation endow their offspring with a trans-generational immune capability to protect them against infections effectively. The knowledge on maternal transfer of immunity and the trans-generational immune effect could provide us with an ideal management strategy of mollusc broodstock to improve the immunity of offspring and to establish a disease-resistant family for a long-term improvement of cultured stocks.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
11
|
Hasan I, Watanabe M, Ishizaki N, Sugita-Konishi Y, Kawakami Y, Suzuki J, Dogasaki C, Rajia S, Kawsar SMA, Koide Y, Kanaly RA, Sugawara S, Hosono M, Ogawa Y, Fujii Y, Iriko H, Hamako J, Matsui T, Ozeki Y. A galactose-binding lectin isolated from Aplysia kurodai (sea hare) eggs inhibits streptolysin-induced hemolysis. Molecules 2014; 19:13990-4003. [PMID: 25197935 PMCID: PMC6271371 DOI: 10.3390/molecules190913990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023] Open
Abstract
A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan. Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh.
| | - Miharu Watanabe
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Naoto Ishizaki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yoshiko Sugita-Konishi
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yasushi Kawakami
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Jun Suzuki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Chikaku Dogasaki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Sultana Rajia
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Sciences, University of Chittagong, Chittagong-4331, Bangladesh.
| | - Yasuhiro Koide
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Robert A Kanaly
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Yukiko Ogawa
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Hideyuki Iriko
- Department of Parasitology, Graduate School of Health Sciences, Kobe University, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan.
| | - Jiharu Hamako
- Department of Biology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Taei Matsui
- Department of Biology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Yasuhiro Ozeki
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
12
|
Abstract
The hemagglutination assay is a simple and easy method to obtain semi-quantitative data on the sugar binding and specificity of a lectin. An active lectin agglutinates erythrocytes by recognizing a carbohydrate on the cell surface and forming a cross-linked network in suspension. By serially diluting the lectin in a 96-well microtiter plate and adding a constant quantity of erythrocytes, the lectin activity can be estimated.
Collapse
Affiliation(s)
- Kotone Sano
- Graduate School of Humanities and Sciences and Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | | |
Collapse
|
13
|
Kawsar SMA, Matsumoto R, Fujii Y, Matsuoka H, Masuda N, Chihiro I, Yasumitsu H, Kanaly RA, Sugawara S, Hosono M, Nitta K, Ishizaki N, Dogasaki C, Hamako J, Matsui T, Ozeki Y. Cytotoxicity and Glycan-Binding Profile of a d-Galactose-Binding Lectin from the Eggs of a Japanese Sea Hare (Aplysia kurodai). Protein J 2011; 30:509-19. [DOI: 10.1007/s10930-011-9356-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Hong YM, Park SH, Yoon BY, Choi BD, Choi YJ. Screen of Functional Activity of Polysaccharide and Glycosaminoglycan from Sea Hare (Aplysia kurodai) by Cell Line. ACTA ACUST UNITED AC 2011. [DOI: 10.3746/jkfn.2011.40.1.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Fujii Y, Kawsar SM, Matsumoto R, Yasumitsu H, Ishizaki N, Dogasaki C, Hosono M, Nitta K, Hamako J, Taei M, Ozeki Y. A d-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:30-7. [DOI: 10.1016/j.cbpb.2010.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 11/27/2022]
|
16
|
Matsumoto R, Shibata TF, Kohtsuka H, Sekifuji M, Sugii N, Nakajima H, Kojima N, Fujii Y, Kawsar SMA, Yasumitsu H, Hamako J, Matsui T, Ozeki Y. Glycomics of a novel type-2 N-acetyllactosamine-specific lectin purified from the feather star, Oxycomanthus japonicus (Pelmatozoa: Crinoidea). Comp Biochem Physiol B Biochem Mol Biol 2010; 158:266-73. [PMID: 21176791 DOI: 10.1016/j.cbpb.2010.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
Abstract
A lectin - designated OXYL for the purposes of this study that strongly recognizes complex-type oligosaccharides of serum glycoproteins - was purified from a crinoid, the feather star Oxycomanthus japonicus, the most basal group among extant echinoderms. OXYL was purified through a combination of anion-exchange and affinity chromatography using Q-sepharose and fetuin-sepharose gel, respectively. Lectin was determined to be a 14-kDa polypeptide by sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions. However, 14-kDa and 28-kDa bands appeared in the same proportion under non-reducing conditions. Gel permeation chromatography showed a 54-kDa peak, suggesting that lectin consists of four 14-kDa subunits. Divalent cations were not indicated, and stable haemagglutination activity was demonstrated at pH 4-12 and temperatures below 60°C. Surface plasmon resonance analysis of OXYL against fetuin showed k(ass) and k(diss) values of 1.4×10(-6)M(-1)s(-1) and 3.1×10(-3)s(-1), respectively, indicating that it has a strong binding affinity to the glycoprotein as lectin. Frontal affinity chromatography using 25 types of prydylamine-conjugated glycans indicated that OXYL specifically recognizes multi-antennary complex-type oligosaccharides containing type-2 N-acetyllactosamines (Galβ1-4GlcNAc) if α2-3-linked sialic acid is linked at the non-reducing terminal. However, type-1 N-acetyllactosamine (Galβ1-3GlcNAc) chains and α2-6-linked sialic acids were never recognized by OXYL. This profiling study showed that OXYL essentially recognizes β1-4-linkage at C-1 position and free OH group at C-6 position of Gal in addition to the conservation of N-acetyl groups at C-2 position and free OH groups at C-3 position of GlcNAc in N-acetyllactosamine. This is the first report on glycomics on a lectin purified from an echinoderm belonging to the subphylum Pelmatozoa.
Collapse
Affiliation(s)
- Ryo Matsumoto
- Laboratory of Glycobiology and Marine Biochemistry, Department of Genome System Sciences, Graduate School of NanoBiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|