1
|
Liang J, Huang Y, Li J, Chen R, Lin Y, Li H, Cao X, Chen T. Genomic Analysis and Functional Validation of Bidirectional Promoters in Medaka ( Oryzias latipes). Int J Mol Sci 2024; 25:13726. [PMID: 39769487 PMCID: PMC11676430 DOI: 10.3390/ijms252413726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Bidirectional promoters (BDPs) regulate the transcription of two adjacent, oppositely oriented genes, offering a compact structure with significant potential for multigene expression systems. Although BDPs are evolutionarily conserved, their regulatory roles and sequence characteristics vary across species, with limited studies in fish. Here, we systematically analyzed the distribution, sequence features, and expression patterns of BDPs in the medaka (Oryzias latipes) genome. A total of 1737 divergent gene pairs, representing 13% of medaka genes, were identified as potentially regulated by BDPs. These genes are enriched in essential biological processes, including organelle function, RNA processing, and ribosome biogenesis. Transcriptomic analysis revealed that co-regulation (co-expression and co-silencing) is a prominent feature of these gene pairs, with variability influenced by tissue and sex. Sequence analysis showed that medaka BDPs are compact, with most fragments under 400 bp and an average GC content of 42.06%. Validation experiments confirmed the bidirectional transcriptional activity of three histone-related BDPs in both medaka SG3 cells and embryos, demonstrating effective and robust regulatory efficiency. This study enhances our understanding of the genomic organization and transcriptional regulation in fish and provides a valuable reference for developing species-specific multigene expression systems in fish genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China; (J.L.); (Y.H.); (J.L.); (R.C.); (Y.L.); (H.L.); (X.C.)
| |
Collapse
|
2
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Khaniya A, Rad SMAH, Halpin J, Tawinwung S, McLellan A, Suppipat K, Hirankarn N. Development of a compact bidirectional promoter-driven dual chimeric antigen receptor (CAR) construct targeting CD19 and CD20 in the Sleeping Beauty (SB) transposon system. J Immunother Cancer 2024; 12:e008555. [PMID: 38677881 PMCID: PMC11057265 DOI: 10.1136/jitc-2023-008555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND A bidirectional promoter-driven chimeric antigen receptor (CAR) cassette provides the simultaneous expression of two CARs, which significantly enhances dual antigen-targeted CAR T-cell therapy. METHODS We developed a second-generation CAR directing CD19 and CD20 antigens, incorporating them in a head-to-head orientation from a bidirectional promoter using a single Sleeping Beauty transposon system. The efficacy of bidirectional promoter-driven dual CD19 and CD20 CAR T cells was determined in vitro against cell lines expressing either, or both, CD19 and CD20 antigens. In vivo antitumor activity was tested in Raji lymphoma-bearing immunodeficient NOD-scid IL2Rgammanull (NSG) mice. RESULTS Of all tested promoters, the bidirectional EF-1α promoter optimally expressed transcripts from both sense (CD19-CAR) and antisense (GFP.CD20-CAR) directions. Superior cytotoxicity, cytokine production and antigen-specific activation were observed in vitro in the bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells. In contrast, a unidirectional construct driven by the EF-1α promoter, but using self-cleaving peptide-linked CD19 and CD20 CARs, showed inferior expression and in vitro function. Treatment of mice bearing advanced Raji lymphomas with bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells effectively controlled tumor growth and extended the survival of mice compared with group treated with single antigen targeted CAR T cells. CONCLUSION The use of bidirectional promoters in a single vector offers advantages of size and robust CAR expression with the potential to expand use in other forms of gene therapies like CAR T cells.
Collapse
MESH Headings
- Antigens, CD19/immunology
- Antigens, CD19/genetics
- Humans
- Animals
- Antigens, CD20/genetics
- Antigens, CD20/metabolism
- Antigens, CD20/immunology
- Mice
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- DNA Transposable Elements
- Promoter Regions, Genetic
- Immunotherapy, Adoptive/methods
- Mice, Inbred NOD
- Cell Line, Tumor
- Mice, SCID
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Asmita Khaniya
- Medical Microbiology, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Josh Halpin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Pharmacology and Physiology, Chulalongkorn University Faculty of Pharmaceutical Sciences, Bangkok, Thailand
| | - Alexander McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Research Affairs, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
5
|
Rashmi R, Majumdar S. Pan-Cancer Analysis Reveals the Prognostic Potential of the THAP9/THAP9-AS1 Sense-Antisense Gene Pair in Human Cancers. Noncoding RNA 2022; 8:51. [PMID: 35893234 PMCID: PMC9326536 DOI: 10.3390/ncrna8040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Human THAP9, which encodes a domesticated transposase of unknown function, and lncRNA THAP9-AS1 (THAP9-antisense1) are arranged head-to-head on opposite DNA strands, forming a sense and antisense gene pair. We predict that there is a bidirectional promoter that potentially regulates the expression of THAP9 and THAP9-AS1. Although both THAP9 and THAP9-AS1 are reported to be involved in various cancers, their correlative roles on each other's expression has not been explored. We analyzed the expression levels, prognosis, and predicted biological functions of the two genes across different cancer datasets (TCGA, GTEx). We observed that although the expression levels of the two genes, THAP9 and THAP9-AS1, varied in different tumors, the expression of the gene pair was strongly correlated with patient prognosis; higher expression of the gene pair was usually linked to poor overall and disease-free survival. Thus, THAP9 and THAP9-AS1 may serve as potential clinical biomarkers of tumor prognosis. Further, we performed a gene co-expression analysis (using WGCNA) followed by a differential gene correlation analysis (DGCA) across 22 cancers to identify genes that share the expression pattern of THAP9 and THAP9-AS1. Interestingly, in both normal and cancer samples, THAP9 and THAP9-AS1 often co-express; moreover, their expression is positively correlated in each cancer type, suggesting the coordinated regulation of this H2H gene pair.
Collapse
Affiliation(s)
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India;
| |
Collapse
|
6
|
Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin. Nat Commun 2022; 13:1550. [PMID: 35322029 PMCID: PMC8943175 DOI: 10.1038/s41467-022-29261-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2022] [Indexed: 12/23/2022] Open
Abstract
RCOR1 is a known transcription repressor that recruits and positions LSD1 and HDAC1/2 on chromatin to erase histone methylation and acetylation. However, there is currently an incomplete understanding of RCOR1’s range of localization and function. Here, we probe RCOR1’s distribution on a genome-wide scale and unexpectedly find that RCOR1 is predominantly associated with transcriptionally active genes. Biochemical analysis reveals that RCOR1 associates with RNA Polymerase II (POL-II) during transcription and deacetylates its carboxy-terminal domain (CTD) at lysine 7. We provide evidence that this non-canonical RCOR1 activity is linked to dampening of POL-II productive elongation at actively transcribing genes. Thus, RCOR1 represses transcription in two ways—first, via a canonical mechanism by erasing transcriptionally permissive histone modifications through associating with HDACs and, second, via a non-canonical mechanism that deacetylates RNA POL-II’s CTD to inhibit productive elongation. We conclude that RCOR1 is a transcription rheostat. The classical neuronal-gene corepressor RCOR1/CoREST is paradoxically enriched in transcriptionally active chromatin. Here the authors show RCOR1 is recruited during promoter-proximal pausing and negatively regulates the nascent-transcript synthesis. They also show that an RCOR1-LSD1- HDAC1 complex removes lysine acetylation from RNA polymerase II to repress transcription.
Collapse
|
7
|
Al-Obaide M, Ishmakej A, Brown C, Mazzella M, Agosta P, Perez-Cruet M, Chaudhry GR. The potential role of integrin alpha 6 in human mesenchymal stem cells. Front Genet 2022; 13:968228. [PMID: 36212156 PMCID: PMC9535380 DOI: 10.3389/fgene.2022.968228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are isolated from various adult and perinatal tissues. Although mesenchymal stem cells from multiple sources exhibit similar morphology and cell surface markers, they differ in their properties. In this study, we determined that the expression of integrin alpha 6 (ITGA6) and ITGA6 antisense RNA (ITGA6-AS1) correlates with the proliferation, cell size, and differentiation potential. The expression of ITGA6 was inversely correlated with ITGA6-AS1 in MSCs. The expression of ITGA6 was higher, but ITGA6-AS1 was lower in MSCs from cord placenta junction, cord tissue, and Wharton's jelly. In contrast, ITGA6 expression was lower, while ITGA6-AS1 was higher in MSCs from the placenta. The bioinformatic analysis showed that ITGA6 genomic DNA transcribes ITGA6-AS1 from the reverse strand, overlapping ITGA6 exon-2. Additionally, we identify several putative promoters (P1-P10) of ITGA6. ITGA6-P10 is CG rich and contains CGI. EMBOSS Cpgplot software revealed a CGI length of 180 bp that extends from nucleotide 125 to 304 of the P10 sequence. We suggest that the post-transcriptional regulation of the ITGA6 in mesenchymal stem cells is controlled by the ITGA6-AS1, which could be a critical factor responsible for the heterogeneity in function and cell fate of human MSCs. These results may provide further impetus for investigations to unravel the mechanisms of ITGA6 regulation that could help maintain or improve the properties of mesenchymal stem cells.
Collapse
Affiliation(s)
- Mohammed Al-Obaide
- Department of Biological Sciences, Oakland University, Rochester, MI, United States.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States
| | - Albi Ishmakej
- Department of Biological Sciences, Oakland University, Rochester, MI, United States.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, United States.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States
| | - Matteo Mazzella
- Department of Biological Sciences, Oakland University, Rochester, MI, United States.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States
| | - Patrina Agosta
- Ascension Providence Hospital, Southfield, MI, United States
| | - Mick Perez-Cruet
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States.,Department of Neurosurgery, Beaumont Health, Royal Oak, MI, United States
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, United States.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, United States
| |
Collapse
|
8
|
Mukherjee S, Detroja R, Balamurali D, Matveishina E, Medvedeva Y, Valencia A, Gorohovski A, Frenkel-Morgenstern M. Computational analysis of sense-antisense chimeric transcripts reveals their potential regulatory features and the landscape of expression in human cells. NAR Genom Bioinform 2021; 3:lqab074. [PMID: 34458728 PMCID: PMC8386243 DOI: 10.1093/nargab/lqab074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/02/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA-RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Deepak Balamurali
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Elena Matveishina
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russian Federation
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
- Department of Biomedical Physics, Moscow Institute of Technology, Dolgoprudny 141701, Russian Federation
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
9
|
Al-Obaide MAI, Al-Obaidi II, Vasylyeva TL. Unexplored regulatory sequences of divergently paired GLA and HNRNPH2 loci pertinent to Fabry disease in human kidney and skin cells: Presence of an active bidirectional promoter. Exp Ther Med 2020; 21:154. [PMID: 33456521 PMCID: PMC7792484 DOI: 10.3892/etm.2020.9586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Fabry disease (FD) is a rare hereditary disorder characterized by a wide range of symptoms caused by a variety of mutations in the galactosidase α (GLA) gene. The heterogeneous nuclear ribonucleoprotein (HNRNPH2) gene is divergently paired with GLA on chromosome X and is thought to be implicated in FD. However, insufficient information is available on the regulatory mechanisms associated with the expression of HNRNPH2 and the GLA loci. Therefore, the current study performed bioinformatics analyses to assess the GLA and HNRNPH2 loci and investigate the regulatory mechanisms involved in the expression of each gene. The regulatory mechanisms underlying GLA and HNRNPH2 were revealed. The expression of each gene was associated with a bidirectional promoter (BDP) characterized by the absence of TATA box motifs and the presence of specific transcription factor binding sites (TFBSs) and a CpG Island (CGI). The nuclear run-on transcription assay confirmed the activity of BDP GLA and HNRNPH2 transcription in 293T. Methylation-specific PCR analysis demonstrated a statistically significant variation in the DNA methylation pattern of BDP in several cell lines, including human adult epidermal keratinocytes (AEKs), human renal glomerular endothelial cells, human renal epithelial cells and 293T cells. The highest observed significance was demonstrated in AEKs (P<0.05). The results of the chromatin-immunoprecipitation assay using 293T cells identified specific TFBS motifs for Yin Yang 1 and nuclear respiratory factor 1 transcription factors in BDPs. The National Center for Biotechnology Information-single nucleotide polymorphism database revealed pathogenic variants in the BDP sequence. Additionally, a previously reported variant associated with a severe heterozygous female case of GLA FD was mapped in BDP. The results of the present study suggested that the expression of the divergent paired loci, GLA and HNRNPH2, were controlled by BDP. Mutations in BDP may also serve a role in FD and may explain clinical disease diversity.
Collapse
Affiliation(s)
- Mohammed A Ibrahim Al-Obaide
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ibtisam I Al-Obaidi
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Tetyana L Vasylyeva
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
10
|
He K, Rad SMAH, Poudel A, McLellan AD. Compact Bidirectional Promoters for Dual-Gene Expression in a Sleeping Beauty Transposon. Int J Mol Sci 2020; 21:ijms21239256. [PMID: 33291599 PMCID: PMC7731152 DOI: 10.3390/ijms21239256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Promoter choice is an essential consideration for transgene expression in gene therapy. The expression of multiple genes requires ribosomal entry or skip sites, or the use of multiple promoters. Promoter systems comprised of two separate, divergent promoters may significantly increase the size of genetic cassettes intended for use in gene therapy. However, an alternative approach is to use a single, compact, bidirectional promoter. We identified strong and stable bidirectional activity of the RPBSA synthetic promoter comprised of a fragment of the human Rpl13a promoter, together with additional intron/exon structures. The Rpl13a-based promoter drove long-term bidirectional activity of fluorescent proteins. Similar results were obtained for the EF1-α and LMP2/TAP1 promoters. However, in a lentiviral vector, the divergent bidirectional systems failed to produce sufficient titres to translate into an expression system for dual chimeric antigen receptor (CAR) expression. Although bidirectional promoters show excellent applicability to drive short RNA in Sleeping Beauty transposon systems, their possible use in the lentiviral applications requiring longer and more complex RNA, such as dual-CAR cassettes, is limited.
Collapse
|
11
|
McEwan AR, MacKenzie A. Perspective: Quality Versus Quantity; Is It Important to Assess the Role of Enhancers in Complex Disease from an In Vivo Perspective? Int J Mol Sci 2020; 21:E7856. [PMID: 33113946 PMCID: PMC7660172 DOI: 10.3390/ijms21217856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sequencing of the human genome has permitted the development of genome-wide association studies (GWAS) to analyze the genetics of a number of complex disorders such as depression, anxiety and substance abuse. Thanks to their ability to analyze huge cohort sizes, these studies have successfully identified thousands of loci associated with a broad spectrum of complex diseases. Disconcertingly, the majority of these GWAS hits occur in non-coding regions of the genome, much of which controls the cell-type-specific expression of genes essential to health. In contrast to gene coding sequences, it is a challenge to understand the function of this non-coding regulatory genome using conventional biochemical techniques in cell lines. The current commentary scrutinizes the field of complex genetics from the standpoint of the large-scale whole-genome functional analysis of the promoters and cis-regulatory elements using chromatin markers. We contrast these large scale quantitative techniques against comparative genomics and in vivo analyses including CRISPR/CAS9 genome editing to determine the functional characteristics of these elements and to understand how polymorphic variation and epigenetic changes within these elements might contribute to complex disease and drug response. Most importantly, we suggest that, although the role of chromatin markers will continue to be important in identifying and characterizing enhancers, more emphasis must be placed on their analysis in relevant in-vivo models that take account of the appropriate cell-type-specific roles of these elements. It is hoped that offering these insights might refocus progress in analyzing the data tsunami of non-coding GWAS and whole-genome sequencing "hits" that threatens to overwhelm progress in the field.
Collapse
Affiliation(s)
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
12
|
lnc9141-a and -b Play a Different Role in Bovine Myoblast Proliferation, Apoptosis, and Differentiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:554-566. [PMID: 31675668 PMCID: PMC6838521 DOI: 10.1016/j.omtn.2019.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 09/11/2019] [Indexed: 01/28/2023]
Abstract
Previously, our transcriptome sequencing revealed that lnc9141 was differentially expressed in muscles of fetal bovine, calf, and adult bovine, which is considered to provide the basis for raising the muscle mass. In this study, we identified lnc9141 characters. lnc9141 has different transcription start sites and 3′ alternative splicing sites of exon 1, producing lnc9141-a and lnc9141-b transcripts that were highly expressed in the heart and lung. Moreover, neither lnc9141-a nor lnc9141-b had the ability to encode proteins. The functions of lnc9141-a and lnc9141-b were explored by cell cycle, 5-ethynyl-2'-deoxyuridine (EdU), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that lnc9141-a or lnc9141-b overexpression decreased the number of myoblasts in the S phase and increased the proportion of cells in the G0/G1 phase. Furthermore, overexpressing lnc9141-a and lnc9141-b respectively downregulated the expression of Cyclin D1. However, lnc9141-a or lnc9141-b interference was found to increase the number of S-phase myoblasts, and upregulate Cyclin D1 and Cyclin E expression. Through Annexin V-FITC/propidium iodide (PI) double staining and the expression of apoptosis marker genes (Bax, Bcl2, and Caspase-3), it was found that lnc9141-b could regulate the expression of Bax gene. Meantime, high expression of lnc9141-b could decrease MyHC expression. In addition, the intergenic region between lnc9141 and IRX5 was 2.3 kb, with a head-to-head orientation. The study also revealed the core regions of the lnc9141 and IRX5 promoter. Our study demonstrated that both lnc9141-a and -b expression inhibited bovine myoblast proliferation. However, lnc9141-b regulated Bax and MyHC expression. The regulatory mechanism of lnc9141-a and lnc9141-b needs to be further explored.
Collapse
|
13
|
Li D, Lin C, Li N, Du Y, Yang C, Bai Y, Feng Z, Su C, Wu R, Song S, Yan P, Chen M, Jain A, Huang L, Zhang Y, Li X. PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine 2019; 45:124-138. [PMID: 31279780 PMCID: PMC6642334 DOI: 10.1016/j.ebiom.2019.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Our previous study revealed that PLAGL2 or POFUT1 can promote tumorigenesis and maintain significant positive correlations in colorectal cancer (CRC). However, the mechanism leading to the co-expression and the underlying functional and biological implications remain unclear. Methods Clinical tumor tissues and TCGA dataset were utilized to analyze the co-expression of PLAGL2 and POFUT1. Luciferase reporter assays, specially made bidirectional promoter vectors and ectopic expression of 3’UTR were employed to study the mechanisms of co-expression. In vitro and in vivo assays were performed to further confirm the oncogenic function of both. The sphere formation assay, immunofluorescence, Western blot and qRT-PCR were performed to investigate the effect of both genes in colorectal cancer stem cells (CSCs). Findings PLAGL2 and POFUT1 maintained co-expression in CRC (r = 0.91, p < .0001). An evolutionarily conserved bidirectional promoter, rather than post-transcriptional regulation by competing endogenous RNAs, caused the co-expression of PLAGL2 and POFUT1 in CRC. The bidirectional gene pair PLAGL2/POFUT1 was subverted in CRC and acted synergistically to promote colorectal tumorigenesis by maintaining stemness of colorectal cancer stem cells through the Wnt and Notch pathways. Finally, PLAGL2 and POFUT1 share transcription factor binding sites, and introducing mutations into promoter regions with shared transcription regulatory elements led to a decrease in the PLAGL2/POFUT1 promoter activity in both directions. Interpretation Our team identified for the first time a bidirectional promoter pair oncogene, PLAGL2-POFUT1, in CRC. The two genes synergistically promote the progression of CRC and affect the characteristics of CSCs, which can offer promising intervention targets for clinicians and researchers. Fund National Nature Science Foundation of China, the Hunan province projects of Postgraduate Independent Exploration and Innovation of Central South University.
Collapse
Affiliation(s)
- Daojiang Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China; Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Changwei Lin
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Nanpeng Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yuheng Du
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Chunxing Yang
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yang Bai
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Zhicai Feng
- Department of Burns and Plastic Surgery, the 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Chen Su
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Runliu Wu
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shenglei Song
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Peicheng Yan
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Miao Chen
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Arad Jain
- College of Arts and Science, University of Virginia, Charlottesville, Virginia 22904, United States of America
| | - Lihua Huang
- Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yi Zhang
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaorong Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China; Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
14
|
Namba S, Sato K, Kojima S, Ueno T, Yamamoto Y, Tanaka Y, Inoue S, Nagae G, Iinuma H, Hazama S, Ishihara S, Aburatani H, Mano H, Kawazu M. Differential regulation of CpG island methylation within divergent and unidirectional promoters in colorectal cancer. Cancer Sci 2019; 110:1096-1104. [PMID: 30637877 PMCID: PMC6398885 DOI: 10.1111/cas.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022] Open
Abstract
The silencing of tumor suppressor genes by promoter CpG island (CGI) methylation is an important cause of oncogenesis. Silencing of MLH1 and BRCA1, two examples of oncogenic events, results from promoter CGI methylation. Interestingly, both MLH1 and BRCA1 have a divergent promoter, from which another gene on the opposite strand is also transcribed. Although studies have shown that divergent transcription is an important factor in transcriptional regulation, little is known about its implication in aberrant promoter methylation in cancer. In this study, we analyzed the methylation status of CGI in divergent promoters using a recently enriched transcriptome database. We measured the extent of CGI methylation in 119 colorectal cancer (CRC) clinical samples (65 microsatellite instability high [MSI‐H] CRC with CGI methylator phenotype, 28 MSI‐H CRC without CGI methylator phenotype and 26 microsatellite stable CRC) and 21 normal colorectal tissues using Infinium MethylationEPIC BeadChip. We found that CGI within divergent promoters are less frequently methylated than CGI within unidirectional promoters in normal cells. In the genome of CRC cells, CGI within unidirectional promoters are more vulnerable to aberrant methylation than CGI within divergent promoters. In addition, we identified three DNA sequence motifs that correlate with methylated CGI. We also showed that methylated CGI are associated with genes whose expression is low in normal cells. Thus, we here provide fundamental observations regarding the methylation of divergent promoters that are essential for the understanding of carcinogenesis and development of cancer prevention strategies.
Collapse
Affiliation(s)
- Shinichi Namba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhito Sato
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
15
|
Structural and Functional Analysis of a Bidirectional Promoter from Gossypium hirsutum in Arabidopsis. Int J Mol Sci 2018; 19:ijms19113291. [PMID: 30360512 PMCID: PMC6274729 DOI: 10.3390/ijms19113291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Stacked traits have become an important trend in the current development of genomically modified crops. The bidirectional promoter can not only prevent the co-suppression of multigene expression, but also increase the efficiency of the cultivation of transgenic plants with multigenes. In Gossypium hirsutum, Ghrack1 and Ghuhrf1 are head-to-head gene pairs located on chromosome D09. We cloned the 1429-bp intergenic region between the Ghrack1 and Ghuhrf1 genes from Gossypium hirsutum. The cloned DNA fragment GhZU had the characteristics of a bidirectional promoter, with 38.7% G+C content, three CpG islands and no TATA-box. Using gfp and gus as reporter genes, a series of expression vectors were constructed into young leaves of tobacco. The histochemical GUS (Beta-glucuronidase) assay and GFP (green fluorescence protein) detection results indicated that GhZU could drive the expression of the reporter genes gus and gfp simultaneously in both orientations. Furthermore, we transformed the expression vectors into Arabidopsis and found that GUS was concentrated at vigorous growth sites, such as the leaf tip, the base of the leaves and pod, and the stigma. GFP was also mainly expressed in the epidermis of young leaves. In summary, we determined that the intergenic region GhZU was an orientation-dependent bidirectional promoter, and this is the first report on the bidirectional promoter from Gossypium hirsutum. Our findings in this study are likely to enhance understanding on the regulatory mechanisms of plant bidirectional promoters.
Collapse
|
16
|
Aziz HA, Abdel-Salam ASG, Al-Obaide MAI, Alobydi HW, Al-Humaish S. Kynurenine 3-Monooxygenase Gene Associated With Nicotine Initiation and Addiction: Analysis of Novel Regulatory Features at 5' and 3'-Regions. Front Genet 2018; 9:198. [PMID: 29951083 PMCID: PMC6008986 DOI: 10.3389/fgene.2018.00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Tobacco smoking is widespread behavior in Qatar and worldwide and is considered one of the major preventable causes of ill health and death. Nicotine is part of tobacco smoke that causes numerous health risks and is incredibly addictive; it binds to the α7 nicotinic acetylcholine receptor (α7nAChR) in the brain. Recent studies showed α7nAChR involvement in the initiation and addiction of smoking. Kynurenic acid (KA), a significant tryptophan metabolite, is an antagonist of α7nAChR. Inhibition of kynurenine 3-monooxygenase enzyme encoded by KMO enhances the KA levels. Modulating KMO gene expression could be a useful tactic for the treatment of tobacco initiation and dependence. Since KMO regulation is still poorly understood, we aimed to investigate the 5' and 3'-regulatory factors of KMO gene to advance our knowledge to modulate KMO gene expression. In this study, bioinformatics methods were used to identify the regulatory sequences associated with expression of KMO. The displayed differential expression of KMO mRNA in the same tissue and different tissues suggested the specific usage of the KMO multiple alternative promoters. Eleven KMO alternative promoters identified at 5'-regulatory region contain TATA-Box, lack CpG Island (CGI) and showed dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs). The structural features of regulatory sequences can influence the transcription process and cell type-specific expression. The uncharacterized LOC105373233 locus coding for non-coding RNA (ncRNA) located on the reverse strand in a convergent manner at the 3'-side of KMO locus. The two genes likely expressed by a promoter that lacks TATA-Box harbor CGI and two TFBSs linked to the bidirectional transcription, the NRF1, and ZNF14 motifs. We identified two types of microRNA (miR) in the uncharacterized LOC105373233 ncRNA, which are like hsa-miR-5096 and hsa-miR-1285-3p and can target the miR recognition element (MRE) in the KMO mRNA. Pairwise sequence alignment identified 52 nucleotides sequence hosting MRE in the KMO 3' UTR untranslated region complementary to the ncRNA LOC105373233 sequence. We speculate that the identified miRs can modulate the KMO expression and together with alternative promoters at the 5'-regulatory region of KMO might contribute to the development of novel diagnostic and therapeutic algorithm for tobacco smoking.
Collapse
Affiliation(s)
- Hassan A Aziz
- College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Mohammed A I Al-Obaide
- School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | | | | |
Collapse
|
17
|
Jangid RK, Kelkar A, Muley VY, Galande S. Bidirectional promoters exhibit characteristic chromatin modification signature associated with transcription elongation in both sense and antisense directions. BMC Genomics 2018; 19:313. [PMID: 29716520 PMCID: PMC5930751 DOI: 10.1186/s12864-018-4697-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/18/2018] [Indexed: 11/30/2022] Open
Abstract
Background In contrast to unidirectional promoters wherein antisense transcription results in short transcripts which are rapidly degraded, bidirectional promoters produce mature transcripts in both sense and antisense orientation. To understand the molecular mechanism of how productive bidirectional transcription is regulated, we focused on delineating the chromatin signature of bidirectional promoters. Results We report generation and utility of a reporter system that enables simultaneous scoring of transcriptional activity in opposite directions. Testing of putative bidirectional promoters in this system demonstrates no measurable bias towards any one direction of transcription. We analyzed the NUP26L-PIH1D3 bidirectional gene pair during Retinoic acid mediated differentiation of embryonic carcinoma cells. In their native context, we observed that the chromatin landscape at and around the transcription regulatory region between the pair of bidirectional genes is modulated in concordance with transcriptional activity of each gene in the pair. We then extended this analysis to 974 bidirectional gene pairs in two different cell lines, H1 human embryonic stem cells and CD4 positive T cells using publicly available ChIP-Seq and RNA-Seq data. Bidirectional gene pairs were classified based on the intergenic distance separating the two TSS of the transcripts analyzed as well as the relative expression of each transcript in a bidirectional gene pair. We report that for the entire range of intergenic distance separating bidirectional genes, the expression profile of such genes (symmetric or asymmetric) matches the histone modification profile of marks associated with active transcription initiation and elongation. Conclusions We demonstrate unique distribution of histone modification marks that correlate robustly with the transcription status of genes regulated by bidirectional promoters. These findings strongly imply that occurrence of these marks might signal the transcription machinery to drive maturation of antisense transcription from the bidirectional promoters. Electronic supplementary material The online version of this article (10.1186/s12864-018-4697-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rahul Kumar Jangid
- Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, 411008, India
| | - Ashwin Kelkar
- Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, 411008, India
| | - Vijaykumar Yogesh Muley
- Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
18
|
A Novel Long Non-Coding RNA in the hTERT Promoter Region Regulates hTERT Expression. Noncoding RNA 2017; 4:ncrna4010001. [PMID: 29657298 PMCID: PMC5890388 DOI: 10.3390/ncrna4010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
A novel antisense transcript was identified in the human telomerase reverse transcriptase (hTERT) promoter region, suggesting that the hTERT promoter is bidirectional. This transcript, named hTERT antisense promoter-associated (hTAPAS) RNA, is a 1.6 kb long non-coding RNA. hTAPAS transcription is initiated 167 nucleotides upstream of the hTERT transcription start site and is present in both the nucleus and the cytoplasm. Surprisingly, we observed that a large fraction of the hTERT polyadenylated RNA is localized in the nucleus, suggesting this might be an additional means of regulating the cellular abundance of hTERT protein. Both hTAPAS and hTERT are expressed in immortalized B-cells and human embryonic stem cells but are not detected in normal somatic cells. hTAPAS expression inversely correlates with hTERT expression in different types of cancer samples. Moreover, hTAPAS expression is not promoted by an hTERT promoter mutation (-124 C>T). Antisense-oligonucleotide mediated knockdown of hTAPAS results in an increase in hTERT expression. Conversely, ectopic overexpression of hTAPAS down regulates hTERT expression, suggesting a negative role in hTERT gene regulation. These observations provide insights into hTAPAS as a novel player that negatively regulates hTERT expression and may be involved in telomere length homeostasis.
Collapse
|
19
|
Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration. Oncotarget 2017; 8:84039-84053. [PMID: 29137403 PMCID: PMC5663575 DOI: 10.18632/oncotarget.21091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The chicken coiled-coil domain-containing protein 152 (CCDC152) recently has been identified as a novel one implicated in cell cycle regulation, cellular proliferation and migration by us. Here we demonstrate that CCDC152 is oriented in a head-to-head configuration with the antisense transcript of growth hormone receptor (GHR) gene. Through serial luciferase reporter assays, we firstly identified a minimal 102 bp intergenic region as a core bidirectional promoter to drive basal transcription in divergent orientations. And site mutation and transient transfected assays showed that nuclear transcription factor Y subunit beta (NFYB) could bind to the CCAAT box and directly transactivate this bidirectional promoter. SiRNA-mediated NFYB depletion could significantly down-regulate the expression of both GHR-AS-I6 and CCDC152. Additionally, the expression of GHR-AS-I6 was significantly up-regulated after CCDC152 overexpression. Overexpression of CCDC152 remarkably reduced cell proliferation and migration through JAK2/STAT signaling pathway. Thus, the GHR-AS-I6-CCDC152 bidirectional transcription unit, as a novel direct target of NFYB, is possibly essential for the accelerated proliferation and motility of different cells.
Collapse
|
20
|
Construction of a combinatorial library of chimeric tumor-specific promoters. Biotechniques 2017; 63:107-116. [PMID: 28911314 DOI: 10.2144/000114586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Gene therapy is a fast-developing field of molecular medicine. New, effective, and cancer-specific promoters are in high demand by researchers seeking to treat cancer through expression of therapeutic genes. Here, we created a combinatorial library of tumor-specific chimeric promoter modules for identifying new promoters with desired functions. The library was constructed by randomly combining promoter fragments from eight human genes involved in cell proliferation control. The pool of chimeric promoters was inserted into a lentiviral expression vector upstream of the CopGFP reporter gene, transduced into A431 cells, and enriched for active promoters by cell sorting. The enriched library contained a remarkably high proportion of active and tumor-specific promoters. This approach to generating combinatorial libraries of chimeric promoters may serve as a useful tool for selecting highly specific and effective promoters for cancer research and gene therapy.
Collapse
|
21
|
Tokizawa M, Kusunoki K, Koyama H, Kurotani A, Sakurai T, Suzuki Y, Sakamoto T, Kurata T, Yamamoto YY. Identification of Arabidopsis genic and non-genic promoters by paired-end sequencing of TSS tags. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:587-605. [PMID: 28214361 DOI: 10.1111/tpj.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Information about transcription start sites (TSSs) provides baseline data for the analysis of promoter architecture. In this paper we used paired- and single-end deep sequencing to analyze Arabidopsis TSS tags from several libraries prepared from roots, shoots, flowers and etiolated seedlings. The clustering of approximately 33 million mapped TSS tags led to the identification of 324 461 promoters that covered 79.7% (21 672/27 206) of protein-coding genes in the Arabidopsis genome. In addition we identified intragenic, antisense and orphan promoters that were not associated with any gene models. Of these, intragenic promoters exhibited unique characteristics regarding dinucleotide sequences at TSSs and core promoter element composition, suggesting that these promoters use different mechanisms of transcriptional initiation. An analysis of base composition with regard to promoter position revealed a low GC content throughout the promoter region and several local strand biases that were evident for TATA-type promoters, but not for Coreless-type promoters. Most observed strand biases coincided with strand biases of single nucleotide polymorphism rate. Our analysis also revealed that transcription of a gene is supported by an average of 2.7 genic promoters, among which one specific promoter, designated as a top promoter, substantially determines the expression level of the gene.
Collapse
Affiliation(s)
- Mutsutomo Tokizawa
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Kazutaka Kusunoki
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yutaka Suzuki
- Institute of Medical Science, University of Tokyo, Shiroganedai 4-6-1, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoaki Sakamoto
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayam-cho 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Tetsuya Kurata
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayam-cho 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Yoshiharu Y Yamamoto
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST ALCA, Tokyo, Japan
| |
Collapse
|
22
|
The PRR11-SKA2 Bidirectional Transcription Unit Is Negatively Regulated by p53 through NF-Y in Lung Cancer Cells. Int J Mol Sci 2017; 18:ijms18030534. [PMID: 28257042 PMCID: PMC5372550 DOI: 10.3390/ijms18030534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
We previously identified proline-rich protein 11 (PRR11) as a novel cancer-related gene that is implicated in the regulation of cell cycle and tumorigenesis. Our recent study demonstrated that PRR11 and its adjacent gene, kinetochore associated 2 (SKA2), constitute a classic head-to-head gene pair that is coordinately regulated by nuclear factor Y (NF-Y). In the present study, we further show that the PRR11-SKA2 bidirectional transcription unit is an indirect target of the tumor suppressor p53. A luciferase reporter assay revealed that overexpression of wild type p53, but not mutant p53, significantly represses the basal activity and NF-Y mediated transactivation of the PRR11-SKA2 bidirectional promoter. Deletion and mutation analysis of the PRR11-SKA2 promoter revealed that p53-mediated PRR11-SKA2 repression is dependent on the presence of functional NF-Y binding sites. Furthermore, a co-immunoprecipitation assay revealed that p53 associates with NF-Y in lung cancer cells, and a chromatin immunoprecipitation assay showed that p53 represses PRR11-SKA2 transcription by reducing the binding amount of NF-Y in the PRR11-SKA2 promoter region. Consistently, the ability of p53 to downregulate PRR11-SKA2 transcription was significantly attenuated upon siRNA-mediated depletion of nuclear factor Y subunit beta (NF-YB). Notably, lung cancer patients with lower expression of either PRR11 or SKA2 along with wild type p53 exhibited the best overall survival compared with others with p53 mutation and/or higher expression of either PRR11 or SKA2. Taken together, our results demonstrate that p53 negatively regulates the expression of the PRR11-SKA2 bidirectional transcription unit through NF-Y, suggesting that the inability to repress the PRR11-SKA2 bidirectional transcription unit after loss of p53 might contribute to tumorigenesis.
Collapse
|
23
|
Avian Leukosis Virus Activation of an Antisense RNA Upstream of TERT in B-Cell Lymphomas. J Virol 2016; 90:9509-17. [PMID: 27512065 DOI: 10.1128/jvi.01127-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Avian leukosis virus (ALV) induces tumors by integrating its proviral DNA into the chicken genome and altering the expression of nearby genes via strong promoter and enhancer elements. Viral integration sites that contribute to oncogenesis are selected in tumor cells. Deep-sequencing analysis of B-cell lymphoma DNA confirmed that the telomerase reverse transcriptase (TERT) gene promoter is a common ALV integration target. Twenty-six unique proviral integration sites were mapped between 46 and 3,552 nucleotides (nt) upstream of the TERT transcription start site, predominantly in the opposite transcriptional orientation to TERT Transcriptome-sequencing (RNA-seq) analysis of normal bursa revealed a transcribed region upstream of TERT in the opposite orientation, suggesting the TERT promoter is bidirectional. This transcript appears to be an uncharacterized antisense RNA. We have previously shown that TERT expression is upregulated in tumors with integrations in the TERT promoter region. We now report that the viral promoter drives the expression of a chimeric transcript containing viral sequences spliced to exons 4 through 7 of this antisense RNA. Clonal expansion of cells with ALV integrations driving overexpression of the TERT antisense RNA suggest it may have a role in tumorigenesis. IMPORTANCE The data suggest that ALV integrations in the TERT promoter region drive the overexpression of a novel antisense RNA and contribute to the development of lymphomas.
Collapse
|
24
|
Fernandez-Valverde SL, Degnan BM. Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep 2016; 6:22496. [PMID: 26931148 PMCID: PMC4773876 DOI: 10.1038/srep22496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
The regulatory systems underlying animal development must have evolved prior to the emergence of eumetazoans (cnidarians and bilaterians). Although representatives of earlier-branching animals - sponges ctenophores and placozoans - possess most of the developmental transcription factor families present in eumetazoans, the DNA regulatory elements that these transcription factors target remain uncharted. Here we characterise the core promoter sequences, U1 snRNP-binding sites (5' splice sites; 5'SSs) and polyadenylation sites (PASs) in the sponge Amphimedon queenslandica. Similar to unicellular opisthokonts, Amphimedon's genes are tightly packed in the genome and have small introns. In contrast, its genes possess metazoan-like core promoters populated with binding motifs previously deemed to be specific to vertebrates, including Nrf-1 and Krüppel-like elements. Also as in vertebrates, Amphimedon's PASs and 5'SSs are depleted downstream and upstream of transcription start sites, respectively, consistent with non-elongating transcripts being short-lived; PASs and 5'SSs are more evenly distributed in bidirectional promoters in Amphimedon. The presence of bilaterian-like regulatory DNAs in sponges is consistent with these being early and essential innovations of the metazoan gene regulatory repertoire.
Collapse
Affiliation(s)
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
25
|
Lin S, Zhang L, Luo W, Zhang X. Characteristics of Antisense Transcript Promoters and the Regulation of Their Activity. Int J Mol Sci 2015; 17:E9. [PMID: 26703594 PMCID: PMC4730256 DOI: 10.3390/ijms17010009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies on natural antisense transcripts have been reported, especially regarding their classification, temporal and spatial expression patterns, regulatory functions and mechanisms. It is well established that natural antisense transcripts are produced from the strand opposite to the strand encoding a protein. Despite the pivotal roles of natural antisense transcripts in regulating the expression of target genes, the transcriptional mechanisms initiated by antisense promoters (ASPs) remain unknown. To date, nearly all of the studies conducted on this topic have focused on the ASP of a single gene of interest, whereas no study has systematically analyzed the locations of ASPs in the genome, ASP activity, or factors influencing this activity. This review focuses on elaborating on and summarizing the characteristics of ASPs to extend our knowledge about the mechanisms of antisense transcript initiation.
Collapse
Affiliation(s)
- Shudai Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
26
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
27
|
Al-Obaide MAI, Alobydi H, Abdelsalam AG, Zhang R, Srivenugopal KS. Multifaceted roles of 5'-regulatory region of the cancer associated gene B4GALT1 and its comparison with the gene family. Int J Oncol 2015; 47:1393-404. [PMID: 26315939 DOI: 10.3892/ijo.2015.3136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
β1,4-Galactosylransferases are a family of enzymes encoded by seven B4GALT genes and are involved in the development of anticancer drug resistance and metastasis. Among these genes, the B4GALT1 shows significant variations in the transcript origination sites in different cell types/tissues and encodes an interesting dually partitioning β-1, 4-galactosyltransferase protein. We identified at 5'-end of B4GALT1 a 1.454 kb sequence forming a transcription regulatory region, referred to by us as the TR1-PE1, had all characteristics of a bidirectional promoter directing the transcription of B4GALT1 in a divergent manner along with its long non-coding RNA (lncRNA) antisense counterpart B4GALT1-AS1. The TR1-PE1 showed unique dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs), INR and BRE, and harbored CpG Island (CGI) that showed GC skew with potential for R-loop formation at the transcription starting sites (TSSs). The 5'-regulatory axis of B4GALT1 also included five more novel TFBSs for CTCF, GLI1, TCF7L2, GATA3 and SOX5, in addition to unique (TG)18 repeats in conjunction with 22 nucleotide TG-associated sequence (TGAS). The five lncRNA B4GALT1-AS1 transcripts showed significant complementarity with B4GALT1 mRNA. In contrast, the rest of B4GALT genes showed fewer lncRNAs, and all lacked the (TG)18 and TGAS. Our results are strongly supported by the FANTOM5 study which showed tissue-specific variations in transcript origination sites for this gene. We suggest that the unique expression patterns for the B4GALT1 in normal and malignant tissues are controlled by a differential usage of 5'-B4GALT1 regulatory units along with a post-transcriptional regulation by the antisense RNA, which in turn govern the cell-matrix interactions, neoplastic progression, anticancer drug sensitivity, and could be utilized in personalized therapy.
Collapse
Affiliation(s)
- Mohammed A Ibrahim Al-Obaide
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Abdelsalam G Abdelsalam
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
28
|
Wang Y, Zhang Y, Zhang C, Weng H, Li Y, Cai W, Xie M, Long Y, Ai Q, Liu Z, Du G, Wang S, Niu Y, Song F, Ozaki T, Bu Y. The gene pair PRR11 and SKA2 shares a NF-Y-regulated bidirectional promoter and contributes to lung cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1133-44. [PMID: 26162986 DOI: 10.1016/j.bbagrm.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
Head-to-head gene pairs represent a unique feature of gene organization in eukaryotes, accounting for >10% of genes in the human genome. Identification and functional analysis of such gene pairs is only in its infancy. Recently, we identified PRR11 as a novel cancer-related gene that is implicated in cell cycle and lung cancer. Here we demonstrate that PRR11 is oriented in a head-to-head configuration with its neighboring gene, SKA2. 5'-RACE assay revealed that the intergenic spacer region between the two genes is <500 bp. Serial luciferase reporter assays demonstrated that a minimal 80-bp intergenic region functions as a core bidirectional promoter to drive basal transcription in both the PRR11 and SKA2 orientations. EMSA and ChIP assays demonstrated that NF-Y binds to and directly transactivates the PRR11-SKA2 bidirectional promoter. SiRNA-mediated NF-Y depletion significantly downregulated PRR11 and SKA2 expression. Expression of both PRR11 and SKA2 was significantly upregulated in lung cancer. Expression of the two genes was highly correlated with each other and with NF-Y expression. Remarkably, high expression of both PRR11 and SKA2 was associated with poorer prognosis in lung cancer patients compared with high expression of one gene or low expression of both genes. Knockdown of PRR11 and/or SKA2 remarkably reduced cell proliferation, migration, and invasion in lung cancer cells. Thus, the PRR11-SKA2 bidirectional transcription unit, which is a novel direct target of NF-Y, is essential for the accelerated proliferation and motility of lung cancer cells and may represent a potential target in the diagnosis and/or treatment of human lung cancer.
Collapse
Affiliation(s)
- Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Huali Weng
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Mengyu Xie
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yinjiang Long
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Ai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Gang Du
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Sen Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yulong Niu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717, Japan
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
29
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
30
|
Razin SV, Gavrilov AA, Ulyanov SV. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 2015. [DOI: 10.1134/s0026893315020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
A system for creating stable cell lines that express a gene of interest from a bidirectional and regulatable herpes simplex virus type 1 promoter. PLoS One 2015; 10:e0122253. [PMID: 25823013 PMCID: PMC4378986 DOI: 10.1371/journal.pone.0122253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 12/03/2022] Open
Abstract
Expression systems used to study the biological function of a gene of interest can have limited utility due to three major factors: i) weak or heterogeneous gene expression; ii) poorly controlled gene expression; and iii) low efficiencies of stable integration and persistent expression. We envisioned that the ideal system should be tightly controlled and coupled with the ability to efficiently create and identify stable cell lines. Herein, we describe a system based upon a bidirectional Herpes simplex virus type 1 promoter that is naturally responsive to the VP16 transactivator and modified to permit tetracycline-regulated transcription on one side while maintaining constitutive activity on the other side. Incorporation of this element into the Sleeping Beauty transposon resulted in a novel bidirectional system with the capacity for high-efficiency stable integration. Using this system, we created stable cell lines in which expression of a gene of interest was tightly and uniformly controlled across a broad range of levels via a novel combination of doxycycline-sensitive de-repression and VP16-mediated sequence-specific induction. The unique characteristics of this system address major limitations of current methods and provide an excellent strategy to investigate the effects of gene dosing in mammalian models.
Collapse
|
32
|
Behura SK, Severson DW. Bidirectional promoters of insects: genome-wide comparison, evolutionary implication and influence on gene expression. J Mol Biol 2014; 427:521-36. [PMID: 25463441 DOI: 10.1016/j.jmb.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Bidirectional promoters are widespread in insect genomes. By analyzing 23 insect genomes we show that the frequency of bidirectional gene pairs varies according to genome compactness and density of genes among the species. The density of bidirectional genes expected based on number of genes per megabase of genome explains the observed density suggesting that bidirectional pairing of genes may be due to random event. We identified specific transcription factor binding motifs that are enriched in bidirectional promoters across insect species. Furthermore, we observed that bidirectional promoters may act as transcriptional hotspots in insect genomes where protein coding genes tend to aggregate in significantly biased (p < 0.001) manner compared to unidirectional promoters. Natural selection seems to have an association with the extent of bidirectionality of genes among the species. The rate of non-synonymous-to-synonymous changes (dN/dS) shows a second-order polynomial distribution with bidirectionality between species indicating that bidirectionality is dependent upon evolutionary pressure acting on the genomes. Analysis of genome-wide microarray expression data of multiple insect species suggested that bidirectionality has a similar association with transcriptome variation across species. Furthermore, bidirectional promoters show significant association with correlated expression of the divergent gene pairs depending upon their motif composition. Analysis of gene ontology showed that bidirectional genes tend to have a common association with functions related to "binding" (including ion binding, nucleotide binding and protein binding) across genomes. Such functional constraint of bidirectional genes may explain their widespread persistence in genome of diverse insect species.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David W Severson
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
33
|
Sokol M, Wabl M, Ruiz IR, Pedersen FS. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors. Retrovirology 2014; 11:36. [PMID: 24886479 PMCID: PMC4098794 DOI: 10.1186/1742-4690-11-36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. RESULTS We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. CONCLUSIONS We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Irene Rius Ruiz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
34
|
Salem T, Gomard T, Court F, Moquet-Torcy G, Brockly F, Forné T, Piechaczyk M. Chromatin loop organization of the junb locus in mouse dendritic cells. Nucleic Acids Res 2013; 41:8908-25. [PMID: 23921639 PMCID: PMC3799436 DOI: 10.1093/nar/gkt669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The junb gene behaves as an immediate early gene in bacterial lipopolysaccharide (LPS)-stimulated dendritic cells (DCs), where its transient transcriptional activation is necessary for the induction of inflammatory cytokines. junb is a short gene and its transcriptional activation by LPS depends on the binding of NF-κB to an enhancer located just downstream of its 3′ UTR. Here, we have addressed the mechanisms underlying the transcriptional hyper-reactivity of junb. Using transfection and pharmacological assays to complement chromatin immunoprecipitation analyses addressing the localization of histones, polymerase II, negative elongation factor (NELF)-, DRB sensitivity-inducing factor (DSIF)- and Positive Transcription Factor b complexes, we demonstrate that junb is a RNA Pol II-paused gene where Pol II is loaded in the transcription start site domain but poorly active. Moreover, High salt-Recovered Sequence, chromosome conformation capture (3C)- and gene transfer experiments show that (i) junb is organized in a nuclear chromatin loop bringing into close spatial proximity the upstream promoter region and the downstream enhancer and (ii) this configuration permits immediate Pol II release on the junb body on binding of LPS-activated NF-κB to the enhancer. Thus, our work unveils a novel topological framework underlying fast junb transcriptional response in DCs. Moreover, it also points to a novel layer of complexity in the modes of action of NF-κB.
Collapse
Affiliation(s)
- Tamara Salem
- Equipe labellisée par la Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France and Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Uchiumi F, Fujikawa M, Miyazaki S, Tanuma SI. Implication of bidirectional promoters containing duplicated GGAA motifs of mitochondrial function-associated genes. AIMS MOLECULAR SCIENCE 2013. [DOI: 10.3934/molsci.2013.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|