1
|
Keller CR, Hu Y, Ruud KF, VanDeen AE, Martinez SR, Kahn BT, Zhang Z, Chen RK, Li W. Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers (Basel) 2021; 13:cancers13225857. [PMID: 34831010 PMCID: PMC8616054 DOI: 10.3390/cancers13225857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Human breast tissue extracellular matrix (ECM) is a microenvironment essential for the survival and biological activities of mammary epithelial cells. The ECM structural features of human breast tissues remain poorly defined. In this study, we identified the structural and mechanical properties of human normal breast and invasive ductal carcinoma tissue ECM using histological methods and atomic force microscopy. Additionally, a protein hydrogel was generated using human breast tissue ECM and defined for its microstructural features using immunofluorescence imaging and machine learning. Furthermore, we examined the three-dimensional growth of normal mammary epithelial cells or breast cancer cells cultured on the ECM protein hydrogel, where the cells exhibited biological phenotypes like those seen in native breast tissues. Our data provide novel insights into cancer cell biology, tissue microenvironment mimicry and engineering, and native tissue ECM-based biomedical and pharmaceutical applications. Abstract Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Yang Hu
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Kelsey F. Ruud
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Anika E. VanDeen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic and Providence Regional Cancer Partnership, Everett, WA 98201, USA;
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Barry T. Kahn
- CellNetix Pathology & Laboratories, Seattle, WA 98104, USA;
- Providence Regional Medical Center, Everett, WA 98201, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Roland K. Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
- Correspondence:
| |
Collapse
|
2
|
Serum levels of cytoskeleton remodeling proteins and their mRNA expression in tumor tissue of metastatic laryngeal and hypopharyngeal cancers. Mol Biol Rep 2021; 48:5135-5142. [PMID: 34231097 DOI: 10.1007/s11033-021-06510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 12/09/2022]
Abstract
Actin-binding proteins (ABPs) and various signaling systems are involved in the process of squamous cell carcinoma of the larynx and hypopharynx (SCCLH) metastasis. The clinical significance of these proteins has not yet been determined. We analyzed the relationship between the mRNA levels of cofilin 1 (CFL1), profilin 1 (PFN1), adenylyl cyclase-associated protein 1 (CAP1), SNAI1 and RND3 and SCCLH metastasis. The serum levels of the above ABPs were estimated and the relationship between them and their mRNA expressions was analyzed. The expression levels of ABP mRNAs were measured by real-time RT-PCR in paired tissue samples taken from 54 patients with SCCLH (T1-4N0-1M0). Expression analysis was performed using the 2-ΔΔCT method. The levels of ABPs in the blood serum were measured by ELISA. Statistical analysis was carried out using the SPSS Statistica 20.0 software package. No significant difference in the mRNA gene expression in tumor tissue of patients with T1-3N0M0 SCCLH and patients with T2-4N1-2M0 SCCLH was found. High expression of RND3 mRNA was accompanied by an increase in mRNA expression of all studied ABPs. In the blood serum of T2-4N1-2M0 patients, the level of PFN1 was lower by 21% and the level of CAP1 was higher by 75% than those observed in T1-4N0M0 patients. The data obtained showed that RND3 is involved in the regulation of molecular cascades of SCCLH metastasis. PFN1 and CAP1 serum levels can be good classifiers of metastases in patients with SCCLH.
Collapse
|
3
|
Raymundo BR, Oh I, Kim M, Kim C. Transgelin Depletion is Critical for the TGFβ1‐mediated Initiation of PLCγ1‐Cofilin‐driven Morphological and Migratory Changes in MDA‐MB‐231 Cells. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bernardo R. Raymundo
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
| | - In‐Rok Oh
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
| | - MiJung Kim
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
- Division of Life Sciences, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
| | - Chan‐Wha Kim
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
- Division of Life Sciences, College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 South Korea
| |
Collapse
|
4
|
Expression of Genes Encoding Cell Motility Proteins during Progression of Head and Neck Squamous Cell Carcinoma. Bull Exp Biol Med 2018; 166:250-252. [PMID: 30488206 DOI: 10.1007/s10517-018-4325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 10/27/2022]
Abstract
The model of head and neck squamous cell carcinoma (HNSCC) was used to study the expression of genes encoding actin-binding proteins depending on the type of cell motility. The expression of SNAIL1 and CAPN2 mRNA in HNSCC tissue was higher than in specimens of dysplastic epithelium of the larynx and hypopharynx, which can be explained by activation of mesenchymal and amoeboid types of cell motility. In biopsy material of HNSCC patients with T1-2N0M0, expression of genes responsible for actin-binding proteins differed from that of patients with pretumor pathology of the larynx and hypopharynx: expression of FSCN was lower, while expressions of EZR and CAP1 were higher. The data attest that progression of HNSCC is associated with activation of both types of cell motility and with the changes in the expression of mRNA encoding cell motility proteins.
Collapse
|
5
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
6
|
Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ. Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep 2018; 50:621-627. [PMID: 29065970 PMCID: PMC5749908 DOI: 10.5483/bmbrep.2017.50.12.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.
Collapse
Affiliation(s)
- A Rome Paek
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science (Seongnam campus) Eulji University, Seongnam 13135, Korea; BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea
| | - Kyeong-Man Hong
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jongkeun Lee
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Dong Wan Hong
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hye Jin You
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
7
|
Gioia M, Michaletti A, Scimeca M, Marini M, Tarantino U, Zolla L, Coletta M. Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts. Cell Death Discov 2018; 4:59. [PMID: 29760957 PMCID: PMC5945613 DOI: 10.1038/s41420-018-0055-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Decreased mechanical loading on bones, such as prolonged bed rest and microgravity during space flights, leads to the development of an osteoporotic-like phenotype. Although osteoblast hypo-functionality is reported to be involved in the progression of bone pathological conditions, the cellular mechanisms of this process remain largely unknown. The combined application of mass spectrometry "-omics" and histochemical and ultrastructural approaches have been employed to investigate the effects of the gravitational unloading on human bone-cell biology. Here we show, ex vivo, that simulated microgravity (Sμg) on human primary osteoblasts (hpOB) induces an alteration of pro-osteogenic determinants (i.e., cell morphology and deposit of hydroxyapatite crystals), accompanied by a downregulation of adhesive proteins and bone differentiation markers (e.g., integrin beta-1, protein folding Crystallin Alpha B (CRYα-B), runt-related transcription factor 2 (RUNX-2), bone morphogenic protein-2 (BMP-2), and receptor activator of nuclear factor kappa-B ligand (RANK-L)), indicating an impairment of osteogenesis. Further, we observed for the first time that Sμg can trigger a transition toward a mesenchymal-like phenotype, in which a mature osteoblast displays an hampered vitamin A metabolism, loses adhesive molecules, gains mesenchymal components (e.g., pre-osteoblast state marker CD44), morphological protrusions (filopodium-like), enhances GTPase activities, which in turn allows it to acquire migrating properties. Although this phenotypic conversion is not complete and can be reversible, Sμg environment proves a plasticity potential hidden on Earth. Overall, our results suggest that Sμg can be a powerful physical cue for triggering ex vivo a dedifferentiation impulse on hpOBs, opening a new scenario of possible innovative therapeutical biomechanical strategies for the treatment of osteo-degenerative diseases.
Collapse
Affiliation(s)
- Magda Gioia
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Michaletti
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Scimeca
- 3Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mario Marini
- 4Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Coletta
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Kakurina GV, Kolegova ES, Kondakova IV. Adenylyl Cyclase-Associated Protein 1: Structure, Regulation, and Participation in Cellular Processes. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534668 DOI: 10.1134/s0006297918010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review summarizes information available to date about the structural organization, regulation of functional activity of adenylyl cyclase-associated protein 1 (CAP1), and its participation in cellular processes. Numerous data are generalized on the role of CAP1 in the regulation of actin cytoskeleton and its interactions with many actin-binding proteins. Attention is drawn to the similarity of the structure of CAP1 and its contribution to the remodeling of actin filaments in prokaryotes and eukaryotes, as well as to the difference in the interaction of CAP1 with adenylyl cyclase in these cells. In addition, we discuss the participation of CAP1 in various pathological processes.
Collapse
Affiliation(s)
- G V Kakurina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|
9
|
MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 2018; 9:344. [PMID: 29497041 PMCID: PMC5832821 DOI: 10.1038/s41419-018-0364-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
Cell-cell adhesions constitute the structural "glue" that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell-cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell-cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER-/PR- breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell-cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER-/PR- breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype.
Collapse
|
10
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
11
|
Simiczyjew A, Mazur AJ, Dratkiewicz E, Nowak D. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells. PLoS One 2017; 12:e0173709. [PMID: 28333953 PMCID: PMC5363831 DOI: 10.1371/journal.pone.0173709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
- * E-mail:
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| |
Collapse
|