1
|
Nesterova VV, Babenkova PI, Brezgunova AA, Samoylova NA, Sadovnikova IS, Semenovich DS, Andrianova NV, Gureev AP, Plotnikov EY. Differences in the Effect of Beta-Hydroxybutyrate on the Mitochondrial Biogenesis, Oxidative Stress and Inflammation Markers in Tissues from Young and Old Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1336-1348. [PMID: 39218029 DOI: 10.1134/s0006297924070149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024]
Abstract
One of the therapeutic approaches to age-related diseases is modulation of body cell metabolism through certain diets or their pharmacological mimetics. The ketogenic diet significantly affects cell energy metabolism and functioning of mitochondria, which has been actively studied in various age-related pathologies. Here, we investigated the effect of the ketogenic diet mimetic beta-hydroxybutyrate (BHB) on the expression of genes regulating mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam), quality control (Sqstm1), functioning of the antioxidant system (Nfe2l2, Gpx1, Gpx3, Srxn1, Txnrd2, Slc6a9, Slc7a11), and inflammatory response (Il1b, Tnf, Ptgs2, Gfap) in the brain, lungs, heart, liver, kidneys, and muscles of young and old rats. We also analyzed mitochondrial DNA (mtDNA) copy number, accumulation of mtDNA damage, and levels of oxidative stress based on the concentration of reduced glutathione and thiobarbituric acid-reactive substances (TBARS). In some organs, aging disrupted mitochondrial biogenesis and functioning of cell antioxidant system, which was accompanied by the increased oxidative stress and inflammation. Administration of BHB for 2 weeks had different effects on the organs of young and old rats. In particular, BHB upregulated expression of genes coding for proteins associated with the mitochondrial biogenesis and antioxidant system, especially in the liver and muscles of young (but not old) rats. At the same time, BHB contributed to the reduction of TBARS in the kidneys of old rats. Therefore, our study has shown that administration of ketone bodies significantly affected gene expression in organs, especially in young rats, by promoting mitochondrial biogenesis, improving the functioning of the antioxidant defense system, and partially reducing the level of oxidative stress. However, these changes were much less pronounced in old animals.
Collapse
Affiliation(s)
| | | | - Anna A Brezgunova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | - Dmitry S Semenovich
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technology, Voronezh, 394036, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
3
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
5
|
Shinn LJ, Lagalwar S. Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Antioxidants (Basel) 2021; 10:antiox10040573. [PMID: 33917835 PMCID: PMC8068221 DOI: 10.3390/antiox10040573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Growing evidence from neurodegenerative disease research supports an early pathogenic role for mitochondrial dysfunction in affected neurons that precedes morphological and functional deficits. The resulting oxidative stress and respiratory malfunction contribute to neuronal toxicity and may enhance the vulnerability of neurons to continued assault by aggregation-prone proteins. Consequently, targeting mitochondria with antioxidant therapy may be a non-invasive, inexpensive, and viable means of strengthening neuronal health and slowing disease progression, thereby extending quality of life. We review the preclinical and clinical findings available to date of the natural bioactive phenol resveratrol and two synthetic mitochondrial-targeted antioxidants, MitoQ and SkQ.
Collapse
|
6
|
Telegina DV, Kozhevnikova OS, Fursova AZ, Kolosova NG. Autophagy as a Target for the Retinoprotective Effects of the Mitochondria-Targeted Antioxidant SkQ1. BIOCHEMISTRY (MOSCOW) 2021; 85:1640-1649. [PMID: 33705301 DOI: 10.1134/s0006297920120159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative disease, a main cause of vision loss in elderly people. The pathogenesis of dry AMD, the most common form of AMD (~ 80% cases), involves degenerative changes in the retinal pigment epithelium (RPE), which are closely associated with the age-associated impairments in autophagy. Reversion of these degenerative changes is considered as a promising approach for the treatment of this incurable disease. The purpose of our study was to assess the relationship between previously identified retinoprotective effects of the mitochondrial antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) and its influence on the autophagy process in senescence-accelerated OXYS rats characterized by the development of AMD-like retinopathy (Wistar rats were used as a control). The treatment with SkQ1 (250 nmol/kg body weight) during the period of active disease progression (from 12 to 18 months of age) completely prevented progression of clinical manifestations of retinopathy in the OXYS rats, suppressed atrophic changes in the RPE cells and activated autophagy in the retina, which was evidenced by a significant decrease in the content of the multifunctional adapter protein p62/Sqstm1 and increase in the level of the Beclin1 gene mRNA. In general, the results obtained earlier and in the present study have shown that SkQ1 is a promising agent for prevention and suppression of AMD.
Collapse
Affiliation(s)
- D V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - A Zh Fursova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Coenzyme Q 10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants (Basel) 2021; 10:antiox10020236. [PMID: 33557229 PMCID: PMC7913973 DOI: 10.3390/antiox10020236] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.
Collapse
|
8
|
Stefanova NA, Ershov NI, Maksimova KY, Muraleva NA, Tyumentsev MA, Kolosova NG. The Rat Prefrontal-Cortex Transcriptome: Effects of Aging and Sporadic Alzheimer's Disease-Like Pathology. J Gerontol A Biol Sci Med Sci 2019; 74:33-43. [PMID: 30265298 DOI: 10.1093/gerona/gly198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most widespread late-life dementia and involves the prefrontal cortex, a vulnerable brain region implicated in memory, emotion, cognition, and decision-making behavior. To understand the molecular differences between the effects of aging and AD on the prefrontal cortex, this study characterized the age-dependent changes in gene expression in Wistar rats (control) and OXYS rats (rodents that simulate key characteristics of sporadic AD) using RNA sequencing. We found that major altered biological processes during aging in Wistar rats were associated with immune processes. Gene expression changes during development of AD-like pathology as well as at the preclinical stage were related to neuronal plasticity, catalytic activity, lipid and immune processes, and mitochondria. A comparison of genes between data sets "OXYS rats" and "human AD" revealed similarity in expression alterations of genes related primarily to mitochondrial function; immune, endocrine, and circulatory systems; signal transduction; neuronal and synaptic processes; hypoxia; and apoptosis. Expression changes in mitochondrial processes identified in OXYS rats by RNA sequencing were confirmed by ultrastructural neuronal organelle alterations and low activity of respiratory chain complexes I, IV, and V in cortical mitochondria, suggesting that mitochondrial dysfunction appears to mediate or possibly even initiate the development of AD.
Collapse
Affiliation(s)
- Natalia A Stefanova
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Nikita I Ershov
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Kseniya Yi Maksimova
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk, Russia
| | - Natalia A Muraleva
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Mikhail A Tyumentsev
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Nataliya G Kolosova
- Department of Molecular Mechanisms of Aging, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Free Radical Chemistry, Novosibirsk State University, Russia
| |
Collapse
|
9
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
10
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
11
|
Suppression of Alzheimer's Disease-Like Pathology Progression by Mitochondria-Targeted Antioxidant SkQ1: A Transcriptome Profiling Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3984906. [PMID: 31396299 PMCID: PMC6664545 DOI: 10.1155/2019/3984906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/02/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia, with increasing prevalence and no disease-modifying treatment available yet. There is increasing evidence—from interventions targeting mitochondria—that may shed some light on new strategies for the treatment of AD. Previously, using senescence-accelerated OXYS rats that simulate key characteristics of sporadic AD, we have shown that treatment with mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) from age 12 to 18 months (that is, during active progression of AD-like pathology)—via improvement of mitochondrial function—prevented the neuronal loss and synaptic damage, enhanced neurotrophic supply, and decreased amyloid-β1–42 protein levels and tau hyperphosphorylation in the hippocampus. In the present study, we continued to explore the mechanisms of the anti-AD effects of SkQ1 in an OXYS rat model through deep RNA sequencing (RNA-seq) and focused upon the cell-specific gene expression alterations in the hippocampus. According to RNA-seq results, OXYS rats had 1,159 differentially expressed genes (DEGs) relative to Wistar rats (control), and 6-month treatment with SkQ1 decreased their number twofold. We found that 10.5% of all DEGs in untreated (control) OXYS rats were associated with mitochondrial function, whereas SkQ1 eliminated differences in the expression of 76% of DEGs (93 from 122 genes). Using transcriptome approaches, we found that the anti-AD effects of SkQ1 are associated with an improvement of the activity of many signaling pathways and intracellular processes. SkQ1 changed the expression of genes in neuronal, glial, and endothelial cells, and these genes are related to mitochondrial function, neurotrophic and synaptic activity, calcium processes, immune and cerebrovascular systems, catabolism, degradation, and apoptosis. Thus, RNA-seq analysis yields a detailed picture of transcriptional changes during the development of AD-like pathology and can point to the molecular and genetic mechanisms of action of the agents (including SkQ1) holding promise for the prevention and treatment of AD.
Collapse
|
12
|
Alterations of hippocampal neurogenesis during development of Alzheimer's disease-like pathology in OXYS rats. Exp Gerontol 2018; 115:32-45. [PMID: 30415068 DOI: 10.1016/j.exger.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the key mechanism of neuronal plasticity in the adult mammalian brain. Alterations of neurogenesis happen concurrently with (and contribute to) development and progression of numerous neuropathological conditions including Alzheimer's disease (AD). Being the most common type of dementia, AD is studied extensively; however, the data concerning changes in neurogenesis in the pathogenesis of this disease are inconsistent. Here, using OXYS rats as a suitable model of the most common (sporadic) form of AD, we examined neurogenesis in the hippocampal dentate gyrus in early ontogenesis prior to appearance of any signs of neurodegeneration and during development and progression of AD-like pathology. We demonstrated retardation of hippocampal development in OXYS rats at an early age; this problem may contribute to the emergence of AD signs late in life. Manifestation and progression of AD-like pathology are accompanied by transcriptome changes affecting genes involved in neurogenesis in the hippocampus. These genes are associated with the extracellular matrix and angiogenesis; this observation points to alteration of a cellular microenvironment. This change along with an increased TrkA/p75NTR ratio of nerve growth factor receptors in the hippocampus may contribute to increased density of immature neurons that we observed at the progressive stage of AD-like pathology in OXYS rats. These changes may be considered a compensatory reaction intended to slow down AD-associated neurodegeneration at the progressive stage of the disease. Collectively, these data suggest that alterations of neurogenesis may not only accompany the course of Alzheimer's disease but also play a causative role in this disorder.
Collapse
|
13
|
Khokhlov AN, Klebanov AA, Morgunova GV. On Choosing Control Objects in Experimental Gerontological Research. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392518020049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Igonina TN, Ragaeva DS, Tikhonova MA, Petrova OM, Herbeck YE, Rozhkova IN, Amstislavskaya TG, Amstislavsky SY. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res 2018; 1681:75-84. [DOI: 10.1016/j.brainres.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
|
15
|
da Silva VK, de Freitas BS, Dornelles VC, Kist LW, Bogo MR, Silva MC, Streck EL, Hallak JE, Zuardi AW, Crippa JAS, Schröder N. Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: Reversal by cannabidiol. Brain Res Bull 2018; 139:1-8. [PMID: 29374603 DOI: 10.1016/j.brainresbull.2018.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Evidence has demonstrated iron accumulation in specific brain regions of patients suffering from neurodegenerative disorders, and this metal has been recognized as a contributing factor for neurodegeneration. Using an experimental model of brain iron accumulation, we have shown that iron induces severe memory deficits that are accompanied by oxidative stress, increased apoptotic markers, and decreased synaptophysin in the hippocampus of rats. The present study aims to characterize iron loading effects as well as to determine the molecular targets of cannabidiol (CBD), the main non-psychomimetic compound of Cannabis sativa, on mitochondria. Rats received iron in the neonatal period and CBD for 14 days in adulthood. Iron induced mitochondrial DNA (mtDNA) deletions, decreased epigenetic modulation of mtDNA, mitochondrial ferritin levels, and succinate dehydrogenase activity. CBD rescued mitochondrial ferritin and epigenetic modulation of mtDNA, and restored succinate dehydrogenase activity in iron-treated rats. These findings provide new insights into molecular targets of iron neurotoxicity and give support for the use of CBD as a disease modifying agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vanessa Kappel da Silva
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Victória Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Milena Carvalho Silva
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Emílio Luiz Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Jaime Eduardo Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
16
|
Stefanova NA, Muraleva NA, Maksimova KY, Rudnitskaya EA, Kiseleva E, Telegina DV, Kolosova NG. An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology. Aging (Albany NY) 2017; 8:2713-2733. [PMID: 27750209 PMCID: PMC5191865 DOI: 10.18632/aging.101054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/18/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial aberrations are observed in human Alzheimer's disease (AD) and in medical conditions that increase the risk of this disorder, suggesting that mitochondrial dysfunction may contribute to pathophysiology of AD. Here, using OXYS rats that simulate key characteristics of sporadic AD, we set out to determine the role of mitochondria in the pathophysiology of this disorder. OXYS rats were treated with a mitochondria-targeted antioxidant SkQ1 from age 12 to 18 months, that is, during active progression of AD-like pathology in these animals. Dietary supplementation with SkQ1 caused this compound to accumulate in various brain regions, and it was localized mostly to neuronal mitochondria. Via improvement of structural and functional state of mitochondria, treatment with SkQ1 alleviated the structural neurodegenerative alterations, prevented the neuronal loss and synaptic damage, increased the levels of synaptic proteins, enhanced neurotrophic supply, and decreased amyloid-β1-42 protein levels and tau hyperphosphorylation in the hippocampus of OXYS rats, resulting in improvement of the learning ability and memory. Collectively, these data support that mitochondrial dysfunction may play a key role in the pathophysiology of AD and that therapies with target mitochondria are potent to normalize a wide range of cellular signaling processes and therefore slow the progression of AD.
Collapse
Affiliation(s)
| | | | | | | | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | - Darya V Telegina
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
17
|
Gulyaeva NV, Bobkova NV, Kolosova NG, Samokhin AN, Stepanichev MY, Stefanova NA. Molecular and Cellular Mechanisms of Sporadic Alzheimer's Disease: Studies on Rodent Models in vivo. BIOCHEMISTRY (MOSCOW) 2017; 82:1088-1102. [PMID: 29037130 DOI: 10.1134/s0006297917100029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer's disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer's disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer's disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | | | | | | | | | |
Collapse
|
18
|
Rudnitskaya EA, Kolosova NG, Stefanova NA. Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats. BIOCHEMISTRY (MOSCOW) 2017; 82:318-329. [DOI: 10.1134/s0006297917030105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Isaev NK, Stelmashook EV, Genrikhs EE, Korshunova GA, Sumbatyan NV, Kapkaeva MR, Skulachev VP. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. Rev Neurosci 2016; 27:849-855. [DOI: 10.1515/revneuro-2016-0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nickolay K. Isaev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elena V. Stelmashook
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elisaveta E. Genrikhs
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Galina A. Korshunova
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Natalya V. Sumbatyan
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Marina R. Kapkaeva
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Vladimir P. Skulachev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| |
Collapse
|
20
|
Isaev NK, Stelmashook EV, Genrikhs EE, Oborina MV, Kapkaeva MR, Skulachev VP. Alzheimer's Disease: An Exacerbation of Senile Phenoptosis. BIOCHEMISTRY (MOSCOW) 2016; 80:1578-81. [PMID: 26638682 DOI: 10.1134/s0006297915120056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline accompanied by degeneration of neuronal synapses, massive loss of neurons in the brain, eventually resulting in complete degradation of personality and death. Currently, the cause of the disease is not fully understood, but it is believed that the person's age is the major risk factor for development of Alzheimer's disease. People who have survived after cerebral stroke or traumatic brain injury have substantially increased risk of developing Alzheimer's disease. Social exclusion, low social activity, physical inactivity, poor mental performance, and low level of education are among risk factors for development of this neurodegenerative disease, which is consistent with the concept of phenoptosis (Skulachev, V. P., et al. (1999) Biochemistry (Moscow), 64, 1418-1426; Skulachev, M. V., and Skulachev, V. P. (2014) Biochemistry (Moscow), 79, 977-993) stating that rate of aging is related to psychological and social aspects in human behavior. Here we assumed that Alzheimer's disease might be considered as an exacerbation of senile phenoptosis. If so, then development of this disease could be slowed using mitochondria-targeted antioxidants due to the accumulated data demonstrating a link between mitochondrial dysfunction and oxidative stress both with normal aging and Alzheimer's disease.
Collapse
Affiliation(s)
- N K Isaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|