1
|
Romodin LA, Nikitenko OV, Bychkova TM, Zrilova YA, Rodionova ED, Bocharov DA. Comparative Evaluation of the Radioprotective Properties of Copper Chlorophyllin, Trolox, and Indralin in an Experiment on Mice. Bull Exp Biol Med 2024; 177:328-332. [PMID: 39126544 DOI: 10.1007/s10517-024-06183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 08/12/2024]
Abstract
The radioprotective properties of copper chlorophyllin (100 and 150 μg/g), the standard antioxidant trolox (100 and 200 μg/g), and the standard radioprotector indralin (100 and 150 μg/g) were compared in male ICR mice (CD-1) subjected to whole-body irradiation (X-ray radiation) in doses of 6, 6.5, and 6.75 Gy. Animal survival was analyzed using the Kaplan-Meier method, and the significance of differences was evaluated using the log-rank test method. Dose change factors determined using the Phinney probit analysis were 1.1, 1.0, and 1.8 for chlorophyllin, trolox, and indralin at a dose of 100 μg/g body weight, respectively. The insignificant radioprotective properties of chlorophyllin and their absence in trolox when administered prophylactically do not rule out their possible radioprotective properties like a radiomodulator that protects the body after irradiation.
Collapse
Affiliation(s)
- L A Romodin
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - O V Nikitenko
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - T M Bychkova
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Yu A Zrilova
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - E D Rodionova
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - D A Bocharov
- State Research Center - Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
2
|
Li S, Lei G, Liu Y, Tian L, Jie Y, Wang G. The protective effect of vitamin A palmitate eye gel on the ocular surface during general anaesthesia surgery: a randomized controlled trial. Int Ophthalmol 2024; 44:168. [PMID: 38573375 PMCID: PMC10995056 DOI: 10.1007/s10792-024-03074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE To investigate the change in tear production associated with general anesthesia and the protective effect of vitamin A palmitate eye gel on the ocular surface during general anesthesia. METHODS This double-blind, randomized clinical trial included patients undergoing non-ophthalmic surgery under general anesthesia who randomly received vitamin A palmitate eye gel and taping for one eye (Group A, n = 60) or taping alone for the other eye (Group B, n = 60). Symptom assessment in dry eye (SANDE) score, tear film break-up time (TBUT), corneal fluorescein staining (CFS) score, and Schirmer tear test I (STT-1) were analyzed under a hand-held slit lamp before anesthesia (T0), 0.5 h postoperatively (T1), and 24 h postoperatively (T2). RESULTS At 0.5 h postoperatively, an increase in CFS score was observed in both groups (P < 0.05 in Group A and P < 0.01 in Group B), and the participants in Group A had less corneal abrasions than those in Group B. STT-1 significantly increased in Group A (P < 0.05), while it significantly decreased in Group B (P < 0.001). The changes between the two groups were statistically significant (P < 0.001). At 24 h postoperatively, both CFS score and STT-1 almost returned to baseline levels in the two groups. In both groups, the SANDE score and TBUT showed little change at 0.5 h and 24 h postoperatively (all P > 0.05). CONCLUSION Vitamin A palmitate eye gel effectively protected the ocular surface and aqueous supplementation during general anesthesia. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (ChiCTR2100052140) on 20/10/2021.
Collapse
Affiliation(s)
- Siyuan Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guiyu Lei
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Operating Room, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Tian
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Madruga GM, Ribeiro AP, Martins LR. Effect of 0.15% sodium hyaluronate on tear film breakup time in healthy anesthetized cats. Vet Ophthalmol 2023; 26:46-52. [PMID: 36227708 DOI: 10.1111/vop.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of 0.15% sodium hyaluronate (SH) on tear film breakup time (TFBT) in healthy anesthetized cats. PROCEDURES Forty cats undergoing elective surgery were enrolled. TFBT was assessed before anesthesia to obtain baseline values. As a preanesthetic medication, cats received midazolam, tramadol, and cetamine combined in the same syringe. For anesthetic induction and maintenance, propofol and isoflurane were used. After a 15 min stabilization period to achieve the surgical anesthetic plane, one eye was treated with one drop of SH, while the other eye received saline and served as a control. TFBT was measured at the end of the general anesthesia (T40) and 35 (T75) and 80 min (T120) after the termination of the anesthesia. TFBT values were compared between the control and SH-treated eyes; both values were also compared with the baseline values (p < .05). RESULTS In the control eyes, TFBT significantly decreased from baseline at all time points (p < .001), while in SH-treated eyes, TFBT significantly increased from baseline only at T40 (p < .0001). In SH-treated eyes, TFBT was significantly higher than that in the control eyes at all time points (p < .001). CONCLUSIONS In healthy cats, TFBT decreases significantly after 40 min of general anesthesia, and one drop of 0.15% sodium hyaluronate was able to maintain the stability of the tear film for up to 75 min in treated eyes. However, the isolated effect of each drug used in our anesthetic protocol on TFBT should be executed in further studies.
Collapse
Affiliation(s)
| | | | - Letícia Ramos Martins
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
4
|
Roth S, Moss HE, Vajaranant TS, Sweitzer B. Perioperative Care of the Patient with Eye Pathologies Undergoing Nonocular Surgery. Anesthesiology 2022; 137:620-643. [PMID: 36179149 PMCID: PMC9588701 DOI: 10.1097/aln.0000000000004338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors reviewed perioperative ocular complications and implications of ocular diseases during nonocular surgeries. Exposure keratopathy, the most common perioperative eye injury, is preventable. Ischemic optic neuropathy, the leading cause of perioperative blindness, has well-defined risk factors. The incidence of ischemic optic neuropathy after spine fusion, but not cardiac surgery, has been decreasing. Central retinal artery occlusion during spine fusion surgery can be prevented by protecting eyes from compression. Perioperative acute angle closure glaucoma is a vision-threatening emergency that can be successfully treated by rapid reduction of elevated intraocular pressure. Differential diagnoses of visual dysfunction in the perioperative period and treatments are detailed. Although glaucoma is increasingly prevalent and often questions arise concerning perioperative anesthetic management, evidence-based recommendations to guide safe anesthesia care in patients with glaucoma are currently lacking. Patients with low vision present challenges to the anesthesia provider that are becoming more common as the population ages.
Collapse
Affiliation(s)
- Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Heather E Moss
- Departments of Ophthalmology and Neurology & Neurologic Sciences, Stanford University, Palo Alto, California
| | - Thasarat Sutabutr Vajaranant
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - BobbieJean Sweitzer
- University of Virginia, Charlottesville, Virginia; Perioperative Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
5
|
An Extensive Study of Phenol Red Thread as a Novel Non-Invasive Tear Sampling Technique for Proteomics Studies: Comparison with Two Commonly Used Methods. Int J Mol Sci 2022; 23:ijms23158647. [PMID: 35955782 PMCID: PMC9369290 DOI: 10.3390/ijms23158647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Tear samples are considered in recent publications as easily, noninvasively collectible information sources for precision medicine. Their complex composition may aid the identification of biomarkers and the monitoring of the effectiveness of treatments for the eye and systemic diseases. Sample collection and processing are key steps in any analytical method, especially if subtle personal differences need to be detected. In this work, we evaluate the usability of a novel sample collection technique for human tear samples using phenol red threads (cotton thread treated with the pH indicator phenol red), which are efficiently used to measure tear volume in clinical diagnosis. The low invasiveness and low discomfort to the patients have already been demonstrated, but their applicability for proteomic sample collection has not yet been compared to other methods. We have shown, using various statistical approaches, the qualitative and quantitative differences in proteomic samples collected with this novel and two traditional methods using either glass capillaries or Schirmer’s paper strips. In all parameters studied, the phenol red threads proved to be equally or even more suitable than traditional methods. Based on detectability using different sampling methods, we have classified proteins in tear samples.
Collapse
|
6
|
Guedes PEB, Veloso JF, Lacerda LC, Santana JO, Mora-Ocampo IY, Pirovani CP, Cruz RDS, Munhoz AD, Carlos RSA. Protein expression of the tear film of domestic cats before and after inoculation with Toxoplasma gondii. BMC Vet Res 2021; 17:386. [PMID: 34906132 PMCID: PMC8670102 DOI: 10.1186/s12917-021-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Proteins are one of its main constituents, whose expression pattern can be used as a biomarker of ocular changes and systemic diseases. The aim of this study was to evaluate the expression of proteins in the TF of domestic cats before and after infection with Toxoplasma gondii, in the phases of acute infection and chronicity. Twelve healthy cats received orally homogenized brain matter obtained from mice inoculated with T. gondii oocysts, strain ME49. Cat feces were collected daily from the third day after infection to assess the release of oocysts. TF samples were obtained from cats, by Schirmer's Tear Test 1, on day 0 (before infection), day 5 after infection (acute phase of infection, with maximum peak release of oocysts in feces) and on day 21 after infection (start of chronic phase, 7 days after total absence of oocyst release in feces). Tear samples were also submitted to proteomic analysis in a Q-Tof-Premier mass spectrometer. RESULTS A total of 37 proteins with scores equal to or greater than 100 were identified on D0, followed by 36 on D5 and 42 on D21. Of these, 27 were common to D0 and D5, 33 to D0 and D21, 27 to D5 and D21, and 26 were common to the three groups, totaling 54 proteins. The most abundant proteins were lipocalin allergen Fel d, serum albumin, aldehyde dehydrogenase, lactoperoxidase and lactotransferrin. There was no significant difference in the abundance of proteins found on D0 and D5, but there was a statistical difference between D0 and D21 for ACT1_AEDAE, CERU_HUMAN and GELS_HUMAN. Regarding D5 and D21, there were significant differences for KV1_CANLF, LAC_PIG, TRFL_PIG, ACT1_AEDAE, CERU_HUMAN, GELS_HUMAN and OVOS2_HUMAN. CONCLUSIONS The main proteins identified in the TF of domestic cats are similar to those found in humans and other animal species. Most are part of the ocular surface defense system against injuries. The most expressed proteins in animals in the chronic phase of T. gondii infection are associated with the immune response to the parasite.
Collapse
Affiliation(s)
| | - Jéssica Fontes Veloso
- Federal University of Western Bahia, Av. 23 de Agosto, S/N, Assunção, Bahia Barra, Brazil
| | | | | | | | | | | | - Alexandre Dias Munhoz
- Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus, Brazil
| | | |
Collapse
|
7
|
Evaluation of Tear Production as Measured by Schirmer Test I in Dogs after Acepromazine and Acepromazine-Methadone Premedication. Animals (Basel) 2021; 11:ani11113015. [PMID: 34827748 PMCID: PMC8614281 DOI: 10.3390/ani11113015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Different sedatives and anesthetic drugs have been reported to cause adverse ocular side effects, such as an exposure keratopathy due to loss of eyelid reflex, lagophthalmos, reduced stability of the tear film and decreased basal tear production. In the present study, the effects of two sedation protocols, acepromazine (ACP) and acepromazine–methadone (ACP–MET) combination, on tear production measured by the Schirmer Tear Test (STT) 1 on canine eyes were investigated, hypothesizing that both sedation protocols cause a reduction in canine tear production for a variable time. A significant decrease in tear production until 2 h after drug administration compared to basal tear values was observed in the ACP experimental protocol, while in the ACP + MET protocol, this reduction persisted until 8 h. In the ACP + MET group, after 40 min, 100% of dogs showed STT 1 readings lower than 15 mm/min, which could predispose them to corneal injuries. The major reduction in tear production due to the ACP + MET protocol proves the need for adequate corneal hydration, particularly to discourage its use in animals with altered tear production. Abstract The purpose of the current study was to investigate the effects of two commonly used sedation protocols in dogs, acepromazine (ACP) and acepromazine–methadone (ACP–MET) combination, on tear production measured by the Schirmer Tear Test (STT) 1. We hypothesized that both sedation protocols cause a reduction in canine tear production for a variable time. Fifteen client-owned dogs were recruited for the study. Each dog was subjected to sedation twice, 2–3 weeks apart, and they were randomly allocated to one of two groups receiving ACP (0.015 mg kg−1) or ACP–MET (0.010 mg kg−1 and 0.2 mg kg−1) intramuscularly. In both eyes, tear production was measured 15 min before sedation (T0) and 20 min (T20 m), 40 min (T40 m), 1 h (T1), 2 h (T2), 4 h (T4) and 8 h (T8), after drug administration. Two-way repeated measures ANOVA, followed by the Bonferroni post hoc test (p < 0.05), showed a significant effect of time (p < 0.0001) and treatment (p < 0.0001). A significant decrease in tear production at T20 m, T40 m, T1 and T2 compared to T0 was observed in the ACP experimental protocol, while in the ACP + MET protocol, this reduction persisted until T8. Comparing the two experimental protocols, no statistically significant differences were observed at T0 or T20 m, and STT 1 values were statistically lower in the ACP + MET than the ACP protocol at the other data points. In the ACP + MET group, at T40 m, 100% of dogs showed STT 1 readings lower than 15 mm/min. This finding is clinically relevant as it can predispose dogs to corneal injuries. The major reduction in tear production due to the ACP + MET protocol proves the need for adequate corneal hydration, particularly to discourage its use in animals with altered tear production. The data obtained provide important information helping clinicians to better manage the drug’s effects on tear production.
Collapse
|
8
|
Singh S, Sharma S, Basu S. Rabbit models of dry eye disease: Current understanding and unmet needs for translational research. Exp Eye Res 2021; 206:108538. [PMID: 33771517 DOI: 10.1016/j.exer.2021.108538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Dry eye disease (DED) is emerging as an eye health pandemic, affecting millions worldwide. The development of novel drugs, drug delivery systems, and targeted therapies for addressing the inflammation in DED necessitates progress in experimental models of DED. Animal models of DED have been created for simulating the two clinically described forms of DED: lacrimal insufficiency and the evaporative DED models. Although most DED models have relied upon rodents, the larger eye size and longer life span of rabbits and the closer resemblance to human lacrimal glands, render rabbits a promising near-ideal model for studying DED. Since the first rabbit DED model was described, numerous modifications including the use of topical epitheliotoxic drugs, neural abolition, activated lymphocytes injection, and surgical dacryoadenectomy have been introduced. The stability of these models, whether short-term or long-term, accordingly guides their experimental or therapeutic utility. A rabbit autoimmune dacryoadenitis model has successfully simulated DED signs and features of lacrimal gland inflammation, as observed in Sjogren's syndrome, that improved with mesenchymal stem cell therapy. This review summarizes the comparative microscopic anatomy of rabbit and human lacrimal glands, various existing rabbit DED models and their respective suitability for understanding pathogenetic mechanism of DED or for experimental drug testing. Also, the insights gained from animal models in dry eye management is described along with the future perspectives. There is still a pressing need of developing rabbit models for studying the pathogenesis of complex ocular surface changes in evaporative and aqueous deficiency DED other than autoimmune dacryoadenitis.
Collapse
Affiliation(s)
- Swati Singh
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Di Pietro S, Giannetto C, Falcone A, Piccione G, Congiu F, Staffieri F, Giudice E. Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders. Vet Sci 2021; 8:vetsci8020028. [PMID: 33669215 PMCID: PMC7919802 DOI: 10.3390/vetsci8020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The general anesthesia or sedation reduces both the tear production and the stability of tear film that protect corneal surface, predisposing itself to the exposure keratopathy. The aim of the present study was to evaluate the effects of intramuscular dexmedetomidine (DEX) on canine tear production, measured by standardized Schirmer Tear Test 1 (STT-1) strips, for the 8 h following sedation, in dogs. A significant effect of time on canine tear production was found, highlighting that dexmedetomidine sedative protocol significantly affects tear production in dogs. It is recommended to treat the canine eyes with tear substitutes to protect ocular surface health and the welfare of the dogs. The ocular lubrication should be performed during and up to 12 h after sedation. The present report could provide preliminary information to better understand the effect of DEX on the tear film dynamics. Abstract Tear film provides lubrication and protection to the ocular surface. The sedation reduces tear production, often leading to perioperative exposure keratopathy. The aim of the present study was to report the effects of intramuscular dexmedetomidine on canine tear production, measured by STT-1, for an experimental period of 8 h after sedation. Ten dogs who underwent sedation for routine radiologic assessment were recruited for the study. In all animals, tear production in right and left eyes was measured 15 min before sedation (T0: basal values) and 20 min (T20), 1 h (T1), 2 h (T2), 4 h (T4) and 8 h (T8) after drug administration. Analysis of variance and post hoc Bonferroni test (p < 0.05) were performed. A significant effect of time on canine tear production was found. The tear production returned to basal values at T8. So, it is recommended to treat the canine eyes with tear substitutes during and up to 12 h after sedation.
Collapse
Affiliation(s)
- Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
- Correspondence: ; Tel.: +39-0906-766-758; Fax: +39-0906-766-979
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
| | - Annastella Falcone
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
| | - Fulvio Congiu
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
| | - Francesco Staffieri
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.G.); (A.F.); (G.P.); (F.C.); (E.G.)
| |
Collapse
|
10
|
Inflammation in Dry Eye Syndrome: Identification and Targeting of Oxylipin-Mediated Mechanisms. Biomedicines 2020; 8:biomedicines8090344. [PMID: 32932827 PMCID: PMC7555241 DOI: 10.3390/biomedicines8090344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye syndrome (DES) is characterized by decreased tear production and stability, leading to desiccating stress, inflammation and corneal damage. DES treatment may involve targeting the contributing inflammatory pathways mediated by polyunsaturated fatty acids and their derivatives, oxylipins. Here, using an animal model of general anesthesia-induced DES, we addressed these pathways by characterizing inflammatory changes in tear lipidome, in correlation with pathophysiological and biochemical signs of the disease. The decline in tear production was associated with the infiltration of inflammatory cells in the corneal stroma, which manifested one to three days after anesthesia, accompanied by changes in tear antioxidants and cytokines, resulting in persistent damage to the corneal epithelium. The inflammatory response manifested in the tear fluid as a short-term increase in linoleic and alpha-linolenic acid-derived oxylipins, followed by elevation in arachidonic acid and its derivatives, leukotriene B4 (5-lipoxigenase product), 12-hydroxyeicosatetraenoic acid (12-lipoxigeanse product) and prostaglandins, D2, E2 and F2α (cyclooxygenase products) that was observed for up to 7 days. Given these data, DES was treated by a novel ophthalmic formulation containing a dimethyl sulfoxide-based solution of zileuton, an inhibitor of 5-lipoxigenase and arachidonic acid release. The therapy markedly improved the corneal state in DES by attenuating cytokine- and oxylipin-mediated inflammatory responses, without affecting tear production rates. Interestingly, the high efficacy of the proposed therapy resulted from the synergetic action of its components, namely, the general healing activity of dimethyl sulfoxide, suppressing prostaglandins and the more specific effect of zileuton, downregulating leukotriene B4 (inhibition of T-cell recruitment), as well as upregulating docosahexaenoic acid (activation of resolution pathways).
Collapse
|
11
|
Chistyakov DV, Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Tiulina VV, Baksheeva VE, Kotelin VI, Fedoseeva EV, Zamyatnin AA, Philippov PP, Kiseleva OA, Bessmertny AM, Senin II, Iomdina EN, Sergeeva MG, Zernii EY. Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits. Metabolomics 2020; 16:27. [PMID: 32052201 DOI: 10.1007/s11306-020-1650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular inflammation is a key pathogenic factor in most blindness-causing visual disorders. It can manifest in the aqueous humor (AH) and tear fluid (TF) as alterations in polyunsaturated fatty acids (PUFAs) and their metabolites, oxylipins, lipid mediators, which are biosynthesized via enzymatic pathways involving lipoxygenase, cyclooxygenase or cytochrome P450 monooxygenase and specifically regulate inflammation and resolution pathways. OBJECTIVES This study aimed to establish the baseline patterns of PUFAs and oxylipins in AH and TF by their comprehensive lipidomic identification and profiling in humans in the absence of ocular inflammation and comparatively analyze these compounds in the eye liquids of rabbits, the species often employed in investigative ophthalmology. METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for qualitative and quantitative characterization of lipid compounds in the analyzed samples. RESULTS A total of 28 lipid compounds were identified, including phospholipid derivatives and PUFAs, as well as 22 oxylipins. Whereas the PUFAs included arachidonic, docosahexaenoic and eicosapentaenoic acids, the oxylipins were derived mainly from arachidonic, linoleic and α-linolenic acids. Remarkably, although the concentration of oxylipins in AH was lower compared to TF, these liquids showed pronounced similarity in their lipid profiles, which additionally exhibited noticeable interspecies concordance. CONCLUSION The revealed correlations confirm the feasibility of rabbit models for investigating pathogenesis and trialing therapies of human eye disorders. The identified metabolite patterns suggest enzymatic mechanisms of oxylipin generation in AH and TF and might be used as a reference in ocular inflammation studies.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
| | - Nadezhda V Azbukina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Vladislav I Kotelin
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Elena V Fedoseeva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Olga A Kiseleva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | | | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Elena N Iomdina
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| |
Collapse
|
12
|
Mechanisms and Treatment of Light-Induced Retinal Degeneration-Associated Inflammation: Insights from Biochemical Profiling of the Aqueous Humor. Int J Mol Sci 2020; 21:ijms21030704. [PMID: 31973128 PMCID: PMC7038222 DOI: 10.3390/ijms21030704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.
Collapse
|
13
|
Chistyakov DV, Azbukina NV, Goriainov SV, Chistyakov VV, Gancharova OS, Tiulina VV, Baksheeva VE, Iomdina EN, Philippov PP, Sergeeva MG, Senin II, Zernii EY. [Inflammatory metabolites of arahidonic acid in tear fluid in UV-induced corneal damage]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:33-40. [PMID: 30816095 DOI: 10.18097/pbmc20196501033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ultraviolet (UV) B-induced damage of the eye surface of experimental animals (rabbits) includes loss of corneal epithelium, apoptosis of keratocytes and stromal edema. These changes are accompanied by clinically and histologically manifested corneal inflammation, neutrophil infiltration, and exudation of the anterior chamber of the eye. According to mass spectrometric analysis, UV-induced corneal damage is associated with pronounced changes in the lipid composition of tears, including a decrease in the amount of arachidonic acid and prostaglandin E2 and an increase in the concentrations of prostaglandin D2 and its derivative 15d-PGJ2. In addition, it is accompanied by an alteration in the levels of hydroxyeicosate tetraenic acid derivatives, namely upregulation of 12-HETE and downregulation of 5-HETE. The revealed changes indicate the activation of metabolic pathways involving 5-lipoxygenase, 12-lipoxygenase, cyclooxygenase 1 and 2, and prostaglandin-D-synthase. These findings contribute to understanding mechanisms of UV-induced keratitis and point on feasibility of selective anti-inflammatory therapy for improving corneal regeneration after iatrogenic UV damage.
Collapse
Affiliation(s)
- D V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Azbukina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - S V Goriainov
- Peoples` Friendship University of Russia, Moscow, Russia
| | - V V Chistyakov
- Peoples` Friendship University of Russia, Moscow, Russia
| | - O S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - E N Iomdina
- Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - P P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - E Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| |
Collapse
|
14
|
Baksheeva VE, Gancharova OS, Tiulina VV, Iomdina EN, Zamyatnin AA, Philippov PP, Zernii EY, Senin II. Iatrogenic Damage of Eye Tissues: Current Problems and Possible Solutions. BIOCHEMISTRY (MOSCOW) 2019; 83:1563-1574. [PMID: 30878031 DOI: 10.1134/s0006297918120143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Visual system is at high risk of iatrogenic damage. Laser ocular surgery, the use of powerful illumination devices in diagnostics and surgical treatment of eye diseases, as well as long surgeries under general anesthesia provoke the development of chronic degenerative changes in eye tissues, primarily in the cornea and the retina. Despite the existence of approaches for prevention and treatment of these complications, the efficacy of these approaches is often limited. Here, we review the mechanisms of iatrogenic damage to eye tissues at the cellular and biochemical levels. It is well recognized that oxidative stress is one of the main factors hindering regeneration of eye tissues after injuries and, thereby, aggravating iatrogenic eye disorders. It is accompanied by the downregulation of low-molecular-weight antioxidants and antioxidant enzymes, as well as changes in the expression and redox status of proteins in the damaged tissue. In this regard, antioxidant therapy, in particular, the use of highly effective mitochondria-targeted antioxidants such as SkQ1, is considered as a promising approach to the prevention of iatrogenesis. Recent findings indicate that the most efficient protection of eye tissues from the iatrogenic injury is achieved by preventive use of these antioxidants. In addition to preventing corneal and retinal cell death induced by oxidative stress, SkQ1 contributes to the restoration of innate antioxidant defense of these tissues and suppresses local inflammatory response. Since the timing of routine medical manipulations is usually known in advance, iatrogenic damage to the ocular tissues can be successfully prevented using mitochondria-targeted therapy.
Collapse
Affiliation(s)
- V E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - O S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - V V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - E N Iomdina
- Moscow Helmholtz Research Institute of Eye Diseases, Moscow, 105062, Russia
| | - A A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - P P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - E Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - I I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
15
|
Baksheeva VE, Tiulina VV, Tikhomirova NK, Gancharova OS, Komarov SV, Philippov PP, Zamyatnin AA, Senin II, Zernii EY. Suppression of Light-Induced Oxidative Stress in the Retina by Mitochondria-Targeted Antioxidant. Antioxidants (Basel) 2018; 8:E3. [PMID: 30577635 PMCID: PMC6356525 DOI: 10.3390/antiox8010003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
Light-induced oxidation of lipids and proteins provokes retinal injuries and results in progression of degenerative retinal diseases, such as, for instance, iatrogenic photic maculopathies. Having accumulated over years retinal injuries contribute to development of age-related macular degeneration (AMD). Antioxidant treatment is regarded as a promising approach to protecting the retina from light damage and AMD. Here, we examine oxidative processes induced in rabbit retina by excessive light illumination with or without premedication using mitochondria-targeted antioxidant SkQ1 (10-(6'-plastoquinonyl)decyltriphenyl-phosphonium). The retinal extracts obtained from animals euthanized within 1⁻7 days post exposure were analyzed for H₂O₂, malondialdehyde (MDA), total antioxidant activity (AOA), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) using colorimetric and luminescence assays. Oxidation of visual arrestin was monitored by immunoblotting. The light exposure induced lipid peroxidation and H₂O₂ accumulation in the retinal cells. Unexpectedly, it prominently upregulated AOA in retinal extracts although SOD and GPx activities were compromised. These alterations were accompanied by accumulation of disulfide dimers of arrestin revealing oxidative stress in the photoreceptors. Premedication of the eyes with SkQ1 accelerated normalization of H₂O₂ levels and redox-status of lipids and proteins, contemporarily enhancing AOA and, likely, sustaining normal activity of GPx. Thus, SkQ1 protects the retina from light-induced oxidative stress and could be employed to suppress oxidative damage of proteins and lipids contributing to AMD.
Collapse
Affiliation(s)
- Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Natalia K Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Sergey V Komarov
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia.
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
16
|
Effect of General Anesthesia Duration on Recovery of Secretion and Biochemical Properties of Tear Fluid in the Post-Anesthetic Period. Bull Exp Biol Med 2018; 165:269-271. [PMID: 29931632 DOI: 10.1007/s10517-018-4145-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 10/28/2022]
Abstract
Changes in the biochemical composition of the tear film is a critical risk factor for the development of chronic perioperative dry eye syndrome, because increasing the duration of general anesthesia did not affect the dynamics of tear secretion recovery, but slowed down normalization of its structure and antioxidant activity in the post-anesthetic period.
Collapse
|
17
|
Zernii EY, Gancharova OS, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, Tiulina VV, Sotnikova LF, Zamyatnin AA, Philippov PP, Senin II. Mitochondria-Targeted Antioxidant SkQ1 Prevents Anesthesia-Induced Dry Eye Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9281519. [PMID: 29158874 PMCID: PMC5660788 DOI: 10.1155/2017/9281519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/14/2017] [Indexed: 02/03/2023]
Abstract
Dry eye syndrome (DES) is an age-related condition increasingly detected in younger people of risk groups, including patients who underwent ocular surgery or long-term general anesthesia. Being a multifactorial disease, it is characterized by oxidative stress in the cornea and commonly complicated by ocular surface inflammation. Polyetiologic DES is responsive to SkQ1, a mitochondria-targeted antioxidant suppressing age-related changes in the ocular tissues. Here, we demonstrate safety and efficacy of topical administration of SkQ1 at a dosage of 7.5 μM for the prevention of general anesthesia-induced DES in rabbits. The protective action of SkQ1 improves clinical state of the ocular surface by inhibiting apoptotic and prenecrotic changes in the corneal epithelium. The underlying mechanism involves the suppression of the oxidative stress supported by the stimulation of intrinsic antioxidant activity and the activity of antioxidant enzymes, foremost glutathione peroxidase and glutathione reductase, in the cornea. Furthermore, SkQ1 increases antioxidant activity and stability of the tear film and produces anti-inflammatory effect exhibited as downregulation of TNF-α and IL-6 and pronounced upregulation of IL-10 in tears. Our data suggest novel features of SkQ1 and point to its feasibility in patients with DES and individuals at risk for the disease including those subjected to general anesthesia.
Collapse
Affiliation(s)
- Evgeni Yu. Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga S. Gancharova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Viktoriia E. Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina O. Golovastova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina I. Kabanova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Marina S. Savchenko
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Veronika V. Tiulina
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Larisa F. Sotnikova
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia
| | - Andrey A. Zamyatnin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Pavel P. Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ivan I. Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|