1
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
2
|
Ancuceanu R, Popovici PC, Drăgănescu D, Busnatu Ș, Lascu BE, Dinu M. QSAR Regression Models for Predicting HMG-CoA Reductase Inhibition. Pharmaceuticals (Basel) 2024; 17:1448. [PMID: 39598360 PMCID: PMC11597356 DOI: 10.3390/ph17111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES HMG-CoA reductase is an enzyme that regulates the initial stage of cholesterol synthesis, and its inhibitors are widely used in the treatment of cardiovascular diseases. METHODS We have created a set of quantitative structure-activity relationship (QSAR) models for human HMG-CoA reductase inhibitors using nested cross-validation as the primary validation method. To develop the QSAR models, we employed various machine learning regression algorithms, feature selection methods, and fingerprints or descriptor datasets. RESULTS We built and evaluated a total of 300 models, selecting 21 that demonstrated good performance (coefficient of determination, R2 ≥ 0.70 or concordance correlation coefficient, CCC ≥ 0.85). Six of these top-performing models met both performance criteria and were used to construct five ensemble models. We identified the descriptors most important in explaining HMG-CoA inhibition for each of the six best-performing models. We used the top models to search through over 220,000 chemical compounds from a large database (ZINC 15) for potential new inhibitors. Only a small fraction (237 out of approximately 220,000 compounds) had reliable predictions with mean pIC50 values ≥ 8 (IC50 values ≤ 10 nM). Our svm-based ensemble model predicted IC50 values < 10 nM for roughly 0.08% of the screened compounds. We have also illustrated the potential applications of these QSAR models in understanding the cholesterol-lowering activities of herbal extracts, such as those reported for an extract prepared from the Iris × germanica rhizome. CONCLUSIONS Our QSAR models can accurately predict human HMG-CoA reductase inhibitors, having the potential to accelerate the discovery of novel cholesterol-lowering agents and may also be applied to understand the mechanisms underlying the reported cholesterol-lowering activities of herbal extracts.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.A.); (P.C.P.); (B.E.L.); (M.D.)
| | - Patriciu Constantin Popovici
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.A.); (P.C.P.); (B.E.L.); (M.D.)
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ștefan Busnatu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania
| | - Beatrice Elena Lascu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.A.); (P.C.P.); (B.E.L.); (M.D.)
| | - Mihaela Dinu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.A.); (P.C.P.); (B.E.L.); (M.D.)
| |
Collapse
|
3
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
4
|
Yu Q, Liu M, Zhao T, Su M, Wang S, Xu W, He S, Li K, Mu X, Wu J, Sun P, Zheng F, Weng N. Mechanism of baixiangdan capsules on anti-neuroinflammation: combining dry and wet experiments. Aging (Albany NY) 2023; 15:7689-7708. [PMID: 37556347 PMCID: PMC10457058 DOI: 10.18632/aging.204934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurological disorders, and despite intensive research, treatment of neuroinflammation remains limited. BaiXiangDan capsule (BXD) is widely used in clinical practice. However, systematic studies on the direct role and mechanisms of BXD in neuroinflammation are still lacking. We systematically evaluated the potential pharmacological mechanisms of BXD on neuroinflammation using network pharmacological analysis combined with experimental validation. Multiple databases are used to mine potential targets for bioactive ingredients, drug targets and neuroinflammation. GO and KEGG pathway analysis was also performed. Interactions between active ingredients and pivotal targets were confirmed by molecular docking. An experimental model of neuroinflammation was used to evaluate possible therapeutic mechanisms for BXD. Network pharmacological analysis revealed that Chrysoeriol, Kaempferol and Luteolin in BXD exerted their anti-neuroinflammatory effects mainly by acting on targets such as NCOA2, PIK3CA and PTGS2. Molecular docking results showed that their average affinity was less than -5 kcal/mol, with an average affinity of -8.286 kcal/mol. Pathways in cancer was found to be a potentially important pathway, with involvement of PI3K/AKT signaling pathways. In addition, in vivo experiments showed that BXD treatment ameliorated neural damage and reduced neuronal cell death. Western blotting, RT-qPCR and ELISA analysis showed that BXD inhibited not only the expression of IL-1β, TNF-α and NO, but also NF-κB, MMP9 and PI3K/AKT signaling pathways. This study applied network pharmacology and in vivo experiments to explore the possible mechanisms of BXD against neuroinflammation, providing insight into the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Qingying Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Molin Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Mengyue Su
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Shukun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518000, China
| | - Shuhua He
- Department of Psychiatry, Boai Hospitai of Zhongshan, Zhongshan 528400, China
| | - Kejie Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Ning Weng
- Department of Traditional Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan 250000, China
| |
Collapse
|
5
|
Petrosyan AS, Rud' RS, Polyakov PP, Kade AK, Zanin SA. The Pathogenetic Basis of the Action of Bempedoic Acid. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.
Collapse
Affiliation(s)
| | - R. S. Rud'
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
6
|
In Vitro Evidence of Statins’ Protective Role against COVID-19 Hallmarks. Biomedicines 2022; 10:biomedicines10092123. [PMID: 36140223 PMCID: PMC9495908 DOI: 10.3390/biomedicines10092123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the progressions in COVID-19 understanding, the optimization of patient-specific therapies remains a challenge. Statins, the most widely prescribed lipid-lowering drugs, received considerable attention due to their pleiotropic effects, encompassing lipid metabolism control and immunomodulatory and anti-thrombotic effects. In COVID-19 patients, statins improve clinical outcomes, reducing Intensive Care Unit admission, the onset of ARDS, and in-hospital death. However, the safety of statins in COVID-19 patients has been debated, mainly for statins’ ability to induce the expression of the ACE2 receptor, the main entry route of SARS-CoV-2. Unfortunately, the dynamic of statins’ mechanism in COVID-19 disease and prevention remains elusive. Using different in vitro models expressing different levels of ACE2 receptor, we investigated the role of lipophilic and hydrophilic statins on ACE2 receptor expression and subcellular localization. We demonstrated that the statin-mediated increase of ACE2 receptor expression does not necessarily coincide with its localization in lipid rafts domains, particularly after treatments with the lipophilic atorvastatin that disrupt lipid rafts’ integrity. Through a proteomic array, we analyzed the cytokine patterns demonstrating that statins inhibit the release of cytokines and factors involved in mild to severe COVID-19 cases. The results obtained provide additional information to dissect the mechanism underlying the protective effects of statin use in COVID-19.
Collapse
|
7
|
Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. Int J Mol Sci 2022; 23:ijms23105303. [PMID: 35628113 PMCID: PMC9141814 DOI: 10.3390/ijms23105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.
Collapse
|
8
|
Long DE, Kosmac K, Dungan CM, Bamman MM, Peterson CA, Kern PA. Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals. Front Physiol 2022; 13:872745. [PMID: 35492586 PMCID: PMC9047873 DOI: 10.3389/fphys.2022.872745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (>65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT.Trial Registration: ClinicalTrials.gov, NCT02308228, Registered on 25 November 2014.
Collapse
Affiliation(s)
- Douglas E. Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Cory M. Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Marcas M. Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charlotte A. Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Philip A. Kern,
| |
Collapse
|
9
|
Radyukhina NV, Ruleva NY, Filatova AY, Aref'eva TI. Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (Statins) Suppress Proliferation and Motility of Human CD4 + T Lymphocytes in Culture. Bull Exp Biol Med 2021; 172:137-142. [PMID: 34855095 DOI: 10.1007/s10517-021-05350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 10/19/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) along with their blood lipid-lowering effect exhibit anti-inflammatory and immunomodulatory activity. We studied the effects of long-term (72-h or longer) exposure of human T lymphocytes in culture to atorvastatin and rosuvastatin (5-80 nM) on their functional activity. Treatment with statins inhibited PHA/IL-2-induced proliferation of CD4+ T lymphocytes isolated from the peripheral blood of healthy donors. This was accompanied by a decrease in the relative content of cells expressing active caspase-3. Addition of mevalonate or fetal bovine serum simultaneously with statins restored proliferative activity of cells. Culturing of CD4+ T lymphocytes with statins in the presence of IL-2 did not significantly affect the expression of chemokine receptors CCR4, CCR5, CXCR3, and CXCR4. Pretreatment with statins suppressed spontaneous and SDF-1-stimulated migration of CD4+ T lymphocytes, but little changed the content of intracellular phosphorylated protein kinases Akt, p38 and p42/44 (ERK1/2). The cellular effects of "lipophilic" atorvastatin were observed at lower concentrations compared to "hydrophilic" rosuvastatin.
Collapse
Affiliation(s)
- N V Radyukhina
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N Yu Ruleva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Filatova
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T I Aref'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Integrative computational approach identifies drug targets in CD4 + T-cell-mediated immune disorders. NPJ Syst Biol Appl 2021; 7:4. [PMID: 33483502 PMCID: PMC7822845 DOI: 10.1038/s41540-020-00165-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.
Collapse
|
11
|
Ruleva NY, Radyukhina NV, Zubkova ES, Filatova AY, Aref'eva TI. Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase (Statins) Suppress Differentiation and Reduce LPS/IFNγ-Induced Cytokine Production in Human Monocyte/Macrophage Culture. Bull Exp Biol Med 2020; 170:236-240. [PMID: 33263856 DOI: 10.1007/s10517-020-05042-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 10/22/2022]
Abstract
We examined the effects of 72-h exposure to atorvastatin and rosuvastatin in concentrations of 2-10 nM on the cytokine expression in LPS/IFNγ-activated monocyte/macrophages derived from peripheral blood monocytes of healthy donors by culturing in the presence of GM-CSF. Pretreatment with statins was found to inhibit cytokine production in monocytes/macrophages after activation, while the level of cytokine mRNA in cells did not decrease. The number of cells containing active caspase-3 decreased in the culture. Culturing of monocytes/macrophages with statins was accompanied by changes in cell morphology and deceleration of cell growth. Cellular effects of "lipophilic" atorvastastin were observed at lower concentration compared to "hydrophilic" rosuvastatin.
Collapse
Affiliation(s)
- N Yu Ruleva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N V Radyukhina
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E S Zubkova
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Filatova
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T I Aref'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
13
|
Barbalata CI, Tefas LR, Achim M, Tomuta I, Porfire AS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol 2020; 11:573-588. [PMID: 32879845 PMCID: PMC7443827 DOI: 10.5306/wjco.v11.i8.573] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Statins, which are competitive inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, reduce cholesterol blood levels and the risk of developing cardiovascular diseases and their related complications. In addition to this main activity, statins show pleiotropic effects such as antioxidant, anti-inflammatory and antiproliferative properties, with applications in many pathologies. Based on their antiproliferative properties, in vitro and in vivo studies have investigated their effects on various types of cancer (i.e., breast cancer, prostate cancer, colorectal cancer, ovarian cancer, lung cancer) with different genetic and molecular characteristics. Many positive results were obtained, but they were highly dependent on the physiochemical properties of the statins, their dose and treatment period. Combined therapies of statins and cytotoxic drugs have also been tested, and synergistic or additive effects were observed. Moreover, observational studies performed on patients who used statins for different pathologies, revealed that statins reduced the risk of developing various cancers, and improved the outcomes for cancer patients. Currently, there are many ongoing clinical trials aimed at exploring the potential of statins to lower the mortality and the disease-recurrence risk. All these results are the foundation of new treatment directions in cancer therapy.
Collapse
Affiliation(s)
- Cristina I Barbalata
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Lucia R Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Alina S Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
14
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Ovchinnikov AG, Arefieva TI, Potekhina AV, Filatova AY, Ageev FT, Boytsov SA. The Molecular and Cellular Mechanisms Associated with a Microvascular Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction. Acta Naturae 2020; 12:40-51. [PMID: 32742726 PMCID: PMC7385098 DOI: 10.32607/actanaturae.10990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a severe disease with an often unfavorable outcome. The prevalence of HFpEF continues to increase, while effective treatment options remain elusive. All the medical strategies used to improve the outcome in a heart failure with reduced ejection fraction proved ineffective in HFpEF, which was probably due to the different mechanisms of development of these two types of heart failure and the diversity of the HFpEF phenotypes. According to the current paradigm of HFpEF development, a chronic mild pro-inflammatory state causes a coronary microvascular endothelial inflammation, with further myocardial fibrosis and diastolic dysfunction progression. This inflammatory paradigm of HFpEF has been confirmed with some evidence, and suppressing the inflammation may become a novel strategy for treating and managing HFpEF. This review summarizes current concepts about a microvascular inflammation in hypertrophied myocardium and provides a translational perspective of the anti-inflammatory and immunomodulatory approaches in HFpEF.
Collapse
Affiliation(s)
- A. G. Ovchinnikov
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| | - T. I. Arefieva
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| | - A. V. Potekhina
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| | - A. Yu. Filatova
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| | - F. T. Ageev
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| | - S. A. Boytsov
- National Medical Research Center of Cardiology, Moscow, 121552 Russia
| |
Collapse
|
16
|
Rosuvastatin Enhances VSV-G Lentiviral Transduction of NK Cells via Upregulation of the Low-Density Lipoprotein Receptor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:634-646. [PMID: 32300610 PMCID: PMC7150439 DOI: 10.1016/j.omtm.2020.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 01/20/2023]
Abstract
Adoptive natural killer (NK) cell therapy is attaining promising clinical outcomes in recent years, but improvements are needed. Genetic modification of NK cells with a tumor antigen-specific receptor on their surface coupled to intracellular signaling domains may lead to enhanced cytotoxicity against malignant cells. One of the most common approaches is by lentivirus-mediated transduction. However, NK cells are difficult to transduce and various methods have been attempted with different success rates. Because the low-density lipoprotein-receptor (LDLR) is the receptor of vesicular stomatitis virus (VSV) and is expressed only at low levels on NK cells, we tested the potential of 5 statins and 5 non-statin compounds to increase the LDLR expression, thereby facilitating viral transduction. We found that the transduction efficiency of VSV-G pseudotyped lentivirus is augmented by statins that induced higher LDLR expression. In both NK-92 cells and primary NK cells, the transduction efficiency increased after treatment with statins. Furthermore, statins have been reported to suppress NK cell cytotoxicity; however, we showed that this can be completely reversed by adding geranylgeranyl-pyrophosphate (GGPP). Among the statins tested, we found that the combination of rosuvastatin with GGPP most potently improved viral transduction without affecting the cytotoxic properties of the NK cells.
Collapse
|
17
|
Karmaus PW, Shi M, Perl S, Biancotto A, Candia J, Cheung F, Kotliarov Y, Young N, Fessler MB. Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol. JCI Insight 2019; 4:131530. [PMID: 31573980 DOI: 10.1172/jci.insight.131530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDHMG-CoA reductase inhibitors (statins) are prescribed to millions of people. Statins are antiinflammatory independent of their cholesterol-reducing effects. To date, most reports on the immune effects of statins have assayed a narrow array of variables and have focused on cell lines, rodent models, or patient cohorts. We sought to define the effect of rosuvastatin on the "immunome" of healthy, normocholesterolemic subjects.METHODSWe conducted a prospective study of rosuvastatin (20 mg/d × 28 days) in 18 statin-naive adults with LDL cholesterol <130 mg/dL. A panel of >180 immune/biochemical/endocrinologic variables was measured at baseline and on days 14, 28, and 42 (14 days after drug withdrawal). Drug effect was evaluated using linear mixed-effects models. Potential interactions between drug and baseline high-sensitivity C-reactive protein (hsCRP) were evaluated.RESULTSA wide array of immune measures changed (nominal P < 0.05) during rosuvastatin treatment, although the changes were modest in magnitude, and few met an FDR of 0.05. Among changes noted were a concordant increase in proinflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, and TNF-α) and peripheral blood neutrophil frequency, and a decline in activated Treg frequency. Several drug effects were significantly modified by baseline hsCRP, and some did not resolve after drug withdrawal. Among other unexpected rosuvastatin effects were changes in erythrocyte indices, glucose-regulatory hormones, CD8+ T cells, and haptoglobin.CONCLUSIONRosuvastatin induces modest changes in immunologic and metabolic measures in normocholesterolemic subjects, with several effects dependent on baseline CRP. Future, larger studies are warranted to validate these changes and their physiological significance.TRIAL REGISTRATIONClinicalTrials.gov NCT01200836.FUNDINGThis research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES102005), and the trans-NIH Center for Human Immunology.
Collapse
Affiliation(s)
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shira Perl
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Julián Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Neal Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | -
- The CHI Consortium is detailed in the supplemental material
| |
Collapse
|
18
|
Park KY, Heo TH. Combination therapy with cilostazol and pravastatin improves antiatherogenic effects in low-density lipoprotein receptor knockout mice. Cardiovasc Ther 2018; 36:e12476. [PMID: 30378752 DOI: 10.1111/1755-5922.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS Despite the therapeutic efficacy of statins and antiplatelet agents for atherosclerosis, monotherapy with each drug alone is often insufficient to achieve the patient's therapeutic goals. We previously showed that combined statin/antiplatelet agent/anti-tumor necrosis factor (TNF) agent therapy (pravastatin/sarpogrelate/etanercept) reduces atherosclerotic lesions by inhibiting TNF, an atherogenic cytokine that contributes to the progression of arteriosclerosis. In addition, our previous study showed that combined treatment with pravastatin and cilostazol is effective for reducing TNF-driven inflammation through anti-TNF activity. Therefore, in the present study, we evaluated the additive effects of combined pravastatin and cilostazol therapy on atherosclerotic progression using low-density lipoprotein receptor (LDLR) knockout (KO) mice. METHODS Ten-week-old LDLR KO mice were fed a high-fat, high-cholesterol diet and orally administered pravastatin and cilostazol alone or in combination. Body weight, plasma lipid levels, and the levels of intracellular adhesion molecules and inflammatory cytokines were analyzed. In addition, aortas and aortic roots were stained with Oil Red O, and atherosclerotic plaques were quantified. RESULTS The atherosclerotic plaques in the combined pravastatin and cilostazol treatment groups were significantly reduced compared to those in each drug monotherapy group. The combination therapy group also showed the downregulation of ICAM-1, MOMA-2, TNF, interleukin (IL)-6, triglyceride, total cholesterol, and low-density lipoprotein levels and the upregulation of high-density lipoprotein levels compared to those of the pravastatin- or cilostazol-treated groups. CONCLUSIONS Our results suggest that combination therapy with pravastatin and cilostazol exerts beneficial effects by decreasing atherosclerotic lesion progression and improving the pro-inflammatory state in the vascular endothelium. These effects are mediated by the reduction in adhesion molecule expression, immune cell infiltration, and cytokine levels and the antiatherosclerotic modulation of serum cholesterol levels. Therefore, we conclude that combined treatment with pravastatin and cilostazol may be a more effective antiatherosclerotic strategy than treatment with either agent alone.
Collapse
Affiliation(s)
- Kyung-Yeon Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Korea
| | - Tae-Hwe Heo
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Korea
| |
Collapse
|