1
|
Lennartz M, Amezada D, Höflmayer D, Dwertmann Rico S, von Bargen C, Kind S, Reiswich V, Viehweger F, Lutz F, Bertram V, Fraune C, Gorbokon N, Weidemann S, Hube-Magg C, Menz A, Uhlig R, Krech T, Hinsch A, Burandt E, Sauter G, Simon R, Kluth M, Marx AH, Lebok P, Dum D, Minner S, Jacobsen F, Clauditz TS, Bernreuther C, Steurer S. Steroidogenic Acute Regulatory Protein Is a Useful Marker for Sex-Cord-Stroma Tumors and Normal and Neoplastic Adrenocortical Tissue. Arch Pathol Lab Med 2024; 148:1327-1336. [PMID: 38484775 DOI: 10.5858/arpa.2023-0281-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 11/26/2024]
Abstract
CONTEXT.— Steroidogenic acute regulatory (StAR) protein is a mitochondrial transport protein with a critical regulatory role for steroid hormone production. The tissue distribution of StAR expression is limited to few human normal tissues. OBJECTIVE.— To assess the diagnostic and prognostic value of StAR immunohistochemistry analysis. DESIGN.— A tissue microarray containing 19 202 samples from 152 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULT.— StAR immunostaining occurred in 198 (1.2%) of the 17 135 analyzable tumors. StAR expression was observed in 27 of 152 tumor categories, 9 of which included at least 1 strongly positive case. The highest rate of StAR positivity occurred in Leydig cell tumors of the testis and the ovary (100%), steroid cell tumors of the ovary (100%), adrenocortical carcinomas (93%) and adenomas (87%), Sertoli-Leydig cell tumors (67%) and granulosa cell tumors of the ovary (56%), as well as seminomas (7%). Nineteen other tumor entities showed-a usually weak-StAR positivity in less than 6% of cases. A comparison with preexisting Melan-A (a melanocyte antigen) data revealed that StAR was more often positive in adrenocortical neoplasms and in Leydig cell tumors while StAR (but not Melan-A) was negative in Sertoli cell tumors. CONCLUSIONS.— Our data provide a comprehensive overview on the patterns of StAR immunostaining in human tumors and suggest a diagnostic utility of StAR immunohistochemistry for supporting a diagnosis of Leydig cell tumors or of normal or neoplastic adrenocortical tissue.
Collapse
Affiliation(s)
- Maximilian Lennartz
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Daniela Amezada
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Doris Höflmayer
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Sebastian Dwertmann Rico
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Clara von Bargen
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Simon Kind
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Viktor Reiswich
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Florian Viehweger
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Florian Lutz
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Veit Bertram
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Christoph Fraune
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Natalia Gorbokon
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Sören Weidemann
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Claudia Hube-Magg
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Anne Menz
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Ria Uhlig
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Till Krech
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
- the Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany (Krech, Lebok)
| | - Andrea Hinsch
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Eike Burandt
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Guido Sauter
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Ronald Simon
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Martina Kluth
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Andreas H Marx
- the Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany (Marx)
| | - Patrick Lebok
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
- the Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany (Krech, Lebok)
| | - David Dum
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Sarah Minner
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Frank Jacobsen
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Till S Clauditz
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Christian Bernreuther
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| | - Stefan Steurer
- From the Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Lennartz, Amezada, Höflmayer, Dwertmann Rico, von Bargen, Kind, Reiswich, Viehweger, Lutz, Bertram, Fraune, Gorbokon, Weidemann, Hube-Magg, Menz, Uhlig, Krech, Hinsch, Burandt, Sauter, Simon, Kluth, Lebok, Dum, Minner, Jacobsen, Clauditz, Bernreuther, Steurer)
| |
Collapse
|
2
|
Cheng L, Yuan J, Fang L, Gao C, Cong L. The placental blood perfusion and LINC00473-mediated promotion of trophoblast apoptosis in fetal growth restriction. Gene 2024; 927:148727. [PMID: 38942180 DOI: 10.1016/j.gene.2024.148727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to investigate placental microblood flow perfusion in fetal growth restriction (FGR) both pre- and post-delivery, and explore the influence of LINC00473 and its downstream targets on FGR progression in trophoblast cells. Placental vascular distribution, placental vascular index (VIMV), CD34 expression, and histological changes were compared between control and FGR groups. FGR-related differentially expressed genes (DEGs) were analyzed and validated by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) in placentae. In vitro experiments examined the regulatory relationships among LINC00473, miR-5189-5p, and StAR, followed by investigations into their impacts on cell proliferation and apoptosis. FGR placentae exhibited irregular shapes, uneven parenchymal echo, stromal dysplasia, ischemic infarction, and variable degrees of thickening in some cases. FGR samples showed less prominent mother vessel lakes, significantly lower VIMV, and decreased CD34 expression. Hematoxylin & eosin (H&E) staining revealed placental fibrosis, fibrin adhesion, infarction, and interstitial dysplasia in FGR. LINC00473, miR-5189-5p, and StAR were identified as DEG, with qPCR demonstrating a significant increase in LINC00473 and a decrease in miR-5189-5p in FGR, while both qPCR and IHC indicated a significant increase in StAR expression. LINC00473 served as an endogenous sponge against miR-5189-5p in human HTR-8/SV neo cells, and StAR expression was regulated by both LINC00473 and miR-5189-5p. Dysregulation of these genes affected cell proliferation and apoptosis. Pathological changes in the placenta are significant contributors to FGR, with placental microblood flow potentially serving as an indicator for monitoring its progression. LINC00473 and its downstream targets may modulate trophoblasts proliferation and apoptosis, thus influencing the onset of FGR, suggesting novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Longfeng Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Anhui 230022, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui 230022, China; Anhui Province Engineering Research Center of Biopreservation and Artificial Organs, Anhui 230022, China
| | - Lutong Fang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Chuanfen Gao
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Lin Cong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Anhui 230022, China.
| |
Collapse
|
3
|
Peng J, Zhang Y, Liu Q, Tang Y, Zhang W, Zheng S, Huang W, Yang M, He Y, Li Z, Xie L, Li J, Wang J, Zhou Y. Allicin in pregnancy diets modulates steroid metabolism in pregnant sows and placental sulphate metabolism promoting placental angiogenesis and foetal development. Animal 2024; 18:101224. [PMID: 39024999 DOI: 10.1016/j.animal.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The low-birth-weight of piglets is an important factor affecting pig enterprises. The placenta, as a key organ for material exchange between mother and foetus, directly influences the growth and development of the foetus. Allicin exhibits various biological activities, including anti-inflammatory and antioxidant properties. It may also play a crucial role in enhancing sow reproductive performance and placental angiogenesis. In this study, we used 70 lactating Landrace × Yorkshire binary heterozygous sows to explore the effect of allicin on the reproductive performance of sows and placental development. The sows were randomly assigned into the Allicin group (Allicin), which was fed with a diet containing 0.25% allicin, and the negative control group, which was fed with basal feed. The experimental period lasted for 114 d from the date of mating to the end of farrowing. The results showed that the addition of allicin to the gestation diets increased the number of total born piglets, born alive piglets, and high-birth-weight piglets, reduced peripartum oxidative stress, alleviated dysregulation of glucose-lipid metabolism in sows, and increased the levels of antioxidant markers in the placenta. Differential analysis of metabolites in maternal plasma and placenta samples by non-targeted metabolomics revealed that allicin improved cholesterol metabolism, steroid biosynthesis, and increased plasma progesterone levels in sows. Allicin promoted sulphur metabolism, cysteine and methionine metabolism in placental samples and increased the hydrogen sulphide (H2S) content in the placenta. In addition, Quantitative Real-time PCR, Western blot and immunofluorescence results showed that allicin upregulated the expression of angiogenesis-related genes, VEGF-A, FLK 1 and Ang 1, in the placenta, implying that it promoted placental angiogenesis. These results indicate that supplementing the diet of pregnant sows with allicin reduces oxidative stress, alleviates dysregulation of glucose-lipid metabolism during the periparturient period, and promotes placental angiogenesis and foetal development by increasing plasma progesterone level and placental H2S content.
Collapse
Affiliation(s)
- J Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Q Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - S Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China
| | - M Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y He
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Z Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - L Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - J Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - J Wang
- Division of AOS & CDC, Faculty of Dentistry, and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
| | - Y Zhou
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China.
| |
Collapse
|
4
|
Su Y, Wu Y, Ye M, Zhao C, Li L, Cai J, Chakraborty T, Yang L, Wang D, Zhou L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110985. [PMID: 38729293 DOI: 10.1016/j.cbpb.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.
Collapse
Affiliation(s)
- Yun Su
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | | | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China.
| |
Collapse
|
5
|
de Barros JW, Joule Pierre K, Kempinas WDG, Tremblay JJ. Ethylene dimethanesulfonate effects on gene promoter activities related to the endocrine function of immortalized Leydig cell lines R2C and MA-10. Curr Res Toxicol 2023; 6:100147. [PMID: 38234696 PMCID: PMC10792691 DOI: 10.1016/j.crtox.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Ethylene dimethanesulfonate (EDS) is a molecule with known selective cytotoxicity on adult Leydig cells. A single intraperitoneal injection in rats but not mice, leads to male androgen deprivation and infertility. In vitro studies using rat and mouse immortalized Leydig cell lines, showed similar effects of cell death promoted by EDS in rat cells as seen in vivo, and suggest that EDS affects gene transcription, which could firstly compromise steroidogenesis before the apoptosis process. Using gene reporter assay, this study aimed to investigate EDS effects on the promoter activity of genes important for endocrine function (Star, Insl3) and response to toxic agents (Gsta3) in immortalized Leydig cell lines (rat R2C and mouse MA-10 cells), as well as identify possible EDS-responsive elements in the Star gene promoter. EDS exposure of R2C and MA-10 Leydig cells increased Gsta3 promoter activity after 4 h of treatment and decreased Insl3 promoter activity only in R2C cells after 24 h of treatment. EDS also decreased Star promoter activity in both Leydig cell lines. Using R2C cells, the EDS-responsive region in the Star promoter was located between -400 and -195 bp. This suggests that this region and the associated transcription factors, which include MEF2, might be targeted by EDS. Additional somatic gonadal cell lines expressing Star were used and EDS did not affect Star promoter activity in DC3 granulosa cells while Star promoter activity was increased in MSC-1 Sertoli cells after 24 h of treatment. This study contributes to the knowledge regarding the mechanism of EDS action in Leydig cells, and in other gonadal cell lineages, and brings new light regarding the rats and mice differential susceptibility to EDS effects, in addition to providing new avenues for experimental approaches to better understand Leydig cell function and dynamics in different rodent species.
Collapse
Affiliation(s)
- Jorge W.F. de Barros
- Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (Unesp), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
| | - Wilma De G. Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (Unesp), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Centre for Research in Reproduction, Development and Intergenerational Health, Université Laval, Québec City, Canada
| |
Collapse
|
6
|
Mustieles V, Lascouts A, Pozo OJ, Haro N, Lyon-Caen S, Jedynak P, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Ouellet-Morin I, Philippat C. Longitudinal Associations between Prenatal Exposure to Phthalates and Steroid Hormones in Maternal Hair Samples from the SEPAGES Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19202-19213. [PMID: 37931007 PMCID: PMC10702498 DOI: 10.1021/acs.est.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
We assessed phthalate-hormone associations in 382 pregnant women of the new-generation SEPAGES cohort (2014-2017, France) using improved exposure and outcome assessments. Metabolites from seven phthalate compounds and the replacement di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (≈21 samples/trimester). Metabolites from five steroid hormones were measured in maternal hair samples collected at delivery, reflecting cumulative levels over the previous weeks to months. Adjusted linear regression and Bayesian weighted quantile sum (BWQS) mixture models were performed. Each doubling in third-trimester urinary mono-benzyl phthalate (MBzP) concentrations was associated with an average increase of 13.3% (95% CI: 2.65, 24.9) for ∑cortisol, 10.0% (95% CI: 0.26, 20.7) for ∑cortisone, 17.3% (95% CI: 1.67, 35.4) for 11-dehydrocorticosterone, and 16.2% (95% CI: 2.20, 32.1) for testosterone, together with a suggestive 10.5% (95% CI: -1.57, 24.1) increase in progesterone levels. Each doubling in second-trimester urinary di-isononyl phthalate (DiNP) concentrations was inversely associated with testosterone levels (-11.6%; 95% CI: -21.6, -0.31). For most hormones, a nonsignificant trend toward a positive phthalate mixture effect was observed in the third but not in the second trimester. Our study showed that exposure to some phthalate metabolites, especially MBzP, may affect adrenal and reproductive hormone levels during pregnancy.
Collapse
Affiliation(s)
- Vicente Mustieles
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Aurélien Lascouts
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Oscar J. Pozo
- Applied
Metabolomics Research Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Noemí Haro
- Applied
Metabolomics Research Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sarah Lyon-Caen
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Paulina Jedynak
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Sam Bayat
- Department
of Pulmonology and Physiology, CHU Grenoble
Alpes, 38700 Grenoble, France
- Grenoble
Alpes University - Inserm UA07, 38400 Grenoble, France
| | - Cathrine Thomsen
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Amrit K. Sakhi
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Azemira Sabaredzovic
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Rémy Slama
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Isabelle Ouellet-Morin
- Research
Center, Institut Universitaire en Santé Mentale de Montréal,
H1N 3M5 Québec, Canada; School of Criminology, Université de Montréal, H3C 3J7 Québec, Canada
| | - Claire Philippat
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| |
Collapse
|
7
|
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel) 2023; 12:1559. [PMID: 37627554 PMCID: PMC10451682 DOI: 10.3390/antiox12081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.
Collapse
Affiliation(s)
- Elizabeth Monageng
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Ugochukwu Offor
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Ndivhuho Beauty Takalani
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
8
|
Kornilov FD, Slonimskiy YB, Lunegova DA, Egorkin NA, Savitskaya AG, Kleymenov SY, Maksimov EG, Goncharuk SA, Mineev KS, Sluchanko NN. Structural basis for the ligand promiscuity of the neofunctionalized, carotenoid-binding fasciclin domain protein AstaP. Commun Biol 2023; 6:471. [PMID: 37117801 PMCID: PMC10147662 DOI: 10.1038/s42003-023-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT β-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.
Collapse
Affiliation(s)
- Fedor D Kornilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Daria A Lunegova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Anna G Savitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Sergey Yu Kleymenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991, Moscow, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
9
|
Varfolomeeva LA, Slonimskiy YB, Egorkin NA, Minyaev ME, Faletrov YV, Boyko KM, Sluchanko NN. Preparation and Structural Studies of the Silkworm Carotenoid-Binding Protein Complexed with a New Pigment. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522060281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Structural basis for the carotenoid binding and transport function of a START domain. Structure 2022; 30:1647-1659.e4. [DOI: 10.1016/j.str.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
|
11
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
12
|
Zamalutdinova SV, Isaeva LV, Zamalutdinov AV, Faletrov YV, Rubtsov MA, Novikova LA. Analysis of Activity of Human Steroidogenic Acute Regulatory Protein (STARD1) Expressed in Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1015-1020. [PMID: 36180996 DOI: 10.1134/s0006297922090127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
One of the main obstacles to the successful use of Escherichia coli cells for steroid transformation in biotechnological processes is inefficient transport of steroid substrates into the cells. Here, we tested the possibility of using human cholesterol transfer protein STARD1 (steroidogenic acute regulatory protein) to increase the efficiency of steroid uptake by bacterial cells. Genetic constructs were obtained for the synthesis in E. coli BL21 (DE3) cells of a truncated version of STARD1 containing protein functional domain (residues 66-285) and STARD1 (66-285)-GFP fusion protein, both carrying bacterial periplasmic targeting sequence pelB at the N-terminus. Analysis of preparations of E. coli/pET22b/STARD1-GFP cells by fluorimetry and Western blotting confirmed that the used expression system ensured the synthesis of the heterologous protein. Using fluorescence spectroscopy, it was demonstrated that the presence of STARD1 in the cells increased the efficiency of assimilation of NBD-labeled cholesterol analogues by E. coli/pET22b/STARD1 cells 1.3-1.6 times (p < 0.05) compared to the wild-type cells, thus demonstrating that human STARD1 exhibits its functional activity in bacterial cells. This opens prospects for optimizing and using a fundamentally new approach to increase the efficiency of steroid uptake by cells - the inclusion of a specific carrier protein in the cell membrane, which can expand the arsenal of methods used to obtain strains of microorganisms for synthesis.
Collapse
Affiliation(s)
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, 220030, Belarus.
| | - Mikhail A Rubtsov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
13
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
14
|
Su Y, Tian Z, Qi X, Luo D, Liu L, Liu S, Zheng D, Wei F, He Z, Guan Q. Effects of increasing intake of soybean oil on synthesis of testosterone in Leydig cells. Nutr Metab (Lond) 2021; 18:53. [PMID: 34039393 PMCID: PMC8157704 DOI: 10.1186/s12986-021-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Background Soybean oil is a very common edible oil in daily life. With the changes in the dietary composition, the intake of soybean oil increased. However, the effects of dietary intake of soybean oil on testosterone production are still unclear. Methods In order to study the effects of increasing intake of soybean oil on the synthesis of testosterone in Leydig cells, we fed male C57BL/6 mice on the diet which added 20% soybean salad oil (SOY group). We detected the hormone levels by enzyme-linked immunosorbent assay (ELISA) kits and serum fatty acid composition by gas chromatography, and analyzed the expression of steroidogenic enzymes by Real-Time PCR or immunoblotting analysis. Results After the 16-week feeding period, serum linoleic acid (LA) and α-linolenic acid (ALA) significantly increased and serum palmitic acid (PA) significantly decreased in SOY group mice. Compared to the normal diet (ND group), increasing intake of soybean oil raised the luteinizing hormone (LH) levels and up-regulated luteinizing hormone/chorionic gonadotropin receptor (LHCGR), steroidogenic acute regulatory protein (StAR) and cytochrome P450 family 11 subfamily A member I (CYP11A1). Testosterone levels in SOY group were higher than that in the ND group, and significantly difference showed. Conclusions Increasing intake of soybean oil could raise the serum LA and ALA levels and decrease serum PA levels. This could activate the LH/LHCGR pathway and improve the function of steroid synthesis in Leydig cells, and finally lead to the elevated testosterone levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00580-1.
Collapse
Affiliation(s)
- Yu Su
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Zhenhua Tian
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiangyu Qi
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Dandan Luo
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Luna Liu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Shuang Liu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Dongmei Zheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fang Wei
- Department of Clinical Expert, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhao He
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China. .,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Qingbo Guan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China. .,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Galano M, Li Y, Li L, Sottas C, Papadopoulos V. Role of Constitutive STAR in Leydig Cells. Int J Mol Sci 2021; 22:2021. [PMID: 33670702 PMCID: PMC7922663 DOI: 10.3390/ijms22042021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Leydig cells contain significant amounts of constitutively produced steroidogenic acute regulatory protein (STAR; STARD1). Hormone-induced STAR plays an essential role in inducing the transfer of cholesterol into the mitochondria for hormone-dependent steroidogenesis. STAR acts at the outer mitochondrial membrane, where it interacts with a protein complex, which includes the translocator protein (TSPO). Mutations in STAR cause lipoid congenital adrenal hyperplasia (lipoid CAH), a disorder characterized by severe defects in adrenal and gonadal steroid production; in Leydig cells, the defects are seen mainly after the onset of hormone-dependent androgen formation. The function of constitutive STAR in Leydig cells is unknown. We generated STAR knockout (KO) MA-10 mouse tumor Leydig cells and showed that STAR KO cells failed to form progesterone in response to dibutyryl-cAMP and to TSPO drug ligands, but not to 22(R)-hydroxycholesterol, which is a membrane-permeable intermediate of the CYP11A1 reaction. Electron microscopy of STAR KO cells revealed that the number and size of lipid droplets were similar to those in wild-type (WT) MA-10 cells. However, the density of lipid droplets in STAR KO cells was drastically different than that seen in WT cells. We isolated the lipid droplets and analyzed their content by liquid chromatography-mass spectrometry. There was a significant increase in cholesteryl ester and phosphatidylcholine content in STAR KO cell lipid droplets, but the most abundant increase was in the amount of diacylglycerol (DAG); DAG 38:1 was the predominantly affected species. Lastly, we identified genes involved in DAG signaling and lipid metabolism which were differentially expressed between WT MA-10 and STAR KO cells. These results suggest that constitutive STAR in Leydig cells is involved in DAG accumulation in lipid droplets, in addition to cholesterol transport. The former event may affect cell functions mediated by DAG signaling.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (M.G.); (Y.L.); (L.L.); (C.S.)
| |
Collapse
|
16
|
Perfluorooctane sulfonate (PFOS) disrupts testosterone biosynthesis via CREB/CRTC2/StAR signaling pathway in Leydig cells. Toxicology 2020; 449:152663. [PMID: 33359577 DOI: 10.1016/j.tox.2020.152663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a stable end-product of perfluorinated compounds (PFCs), is associated with male reproductive disorders, but its underlying mechanisms are still unclear. We used in vivo and in vitro models to investigate the effects of PFOS on testosterone biosynthesis and related mechanisms. First, male ICR mice were orally administered PFOS (0-10 mg/kg/bw) for 4 weeks. Bodyweight, sperm count, reproductive hormones, mRNA expression of the genes related to testosterone biosynthesis, and the protein expression of protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), cAMP-response element binding protein (CREB), CREB regulated transcription coactivator 2 (CRTC2) and steroidogenic acute regulatory protein (StAR) were evaluated. Furthermore, mouse primary Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently decreased sperm count, testosterone level, CRTC2/StAR expression, and damaged testicular interstitium morphology, paralleled by increase in phosphorylated PKA, CREB and p38 in testes. Additionally, similar to the in vivo results, PFOS significantly decreased testosterone secretion, CRTC2/StAR expression, interaction between CREB and CRTC2 and binding of CREB/CRTC2 to StAR promoter region, paralleled by increase in phosphorylated-p38, PKA, and CREB expression. Meanwhile, inhibition of p38 by SB203580, or inhibition of PKA by H89 can significantly alleviate the above PFOS-induced effects. As such, the present study highlights a role of the CREB/CRTC2/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
|
17
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Xie W, Tang Z, Xu L, Zhong J, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of SF-1, StAR and P450scc in the scent glands of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2020; 204:105766. [PMID: 32991988 DOI: 10.1016/j.jsbmb.2020.105766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
The steroidogenesis occurs in specific cells and tissues in the mammals which begins with the transfer and intracellular processing of cholesterol converted to pregnenolone. This study investigated the gene and protein expression levels of steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR) and cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) in the scent glands of the muskrats during the breeding and non-breeding seasons. The immunohistochemical localizations of StAR and P450scc were identified in the glandular cells and epithelial cells while SF-1 was only expressed in glandular cells during the breeding and non-breeding seasons. The gene and protein expression levels of SF-1, StAR and P450scc in the scent glands were remarkedly higher in the breeding season than those of the non-breeding season. The interaction of micro RNAs (miRNAs) and transcriptome results showed that miR-762 and miR-4454 might be the genes encoding (Nr5a1, Star and Cyp11a1) in key biological processes. Taken together, these results suggested that the scent glands of the muskrats potentially owned ability to synthesize steroid hormones de novo, and the steroid hormones might affect the scent glandular functions of the muskrats during the breeding and non-breeding seasons.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zeqi Tang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Luxia Xu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiahui Zhong
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
19
|
Obsilova V, Obsil T. A new role for 14-3-3 protein in steroidogenesis. FEBS J 2020; 287:3921-3924. [PMID: 32852115 DOI: 10.1111/febs.15507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Steroidogenic acute regulatory protein (STARD1) is regulated by phosphorylation and 14-3-3 protein binding. STARD1 is a key player in cholesterol transport in mitochondria, and its regulation is not fully understood. Tugaeva et al. provide novel insights on the site-specific phosphorylation and subsequent 14-3-3-dependent regulation of STARD1 function. These results may help us understand the mechanism behind the regulation of steroidogenesis. Comment on: https://doi.org/10.1111/febs.15474.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Tugaeva KV, Titterington J, Sotnikov DV, Maksimov EG, Antson AA, Sluchanko NN. Molecular basis for the recognition of steroidogenic acute regulatory protein by the 14‐3‐3 protein family. FEBS J 2020; 287:3944-3966. [DOI: 10.1111/febs.15474] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Kristina V. Tugaeva
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biochemistry School of Biology M.V. Lomonosov Moscow State University Russia
| | - James Titterington
- York Structural Biology Laboratory Department of Chemistry University of York UK
| | - Dmitriy V. Sotnikov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
| | - Eugene G. Maksimov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics School of Biology M.V. Lomonosov Moscow State University Russia
| | - Alfred A. Antson
- York Structural Biology Laboratory Department of Chemistry University of York UK
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics School of Biology M.V. Lomonosov Moscow State University Russia
| |
Collapse
|
21
|
Faletrov YV, Efimova VS, Horetski MS, Tugaeva KV, Frolova NS, Lin Q, Isaeva LV, Rubtsov MA, Sluchanko NN, Novikova LA, Shkumatov VM. New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells. Chem Phys Lipids 2019; 227:104850. [PMID: 31836520 DOI: 10.1016/j.chemphyslip.2019.104850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023]
Abstract
20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Collapse
Affiliation(s)
- Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Matvey S Horetski
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Pr. 33, Moscow, 119071, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Nina S Frolova
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Quingquing Lin
- Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Pr. 33, Moscow, 119071, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Vladimir M Shkumatov
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus.
| |
Collapse
|
22
|
Tan L, Tong J, Chun C, Im YJ. Structural analysis of human sterol transfer protein STARD4. Biochem Biophys Res Commun 2019; 520:466-472. [PMID: 31607485 DOI: 10.1016/j.bbrc.2019.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
The steroidogenic acute regulatory protein (StAR)-related lipid transfer domain-4 (STARD4) is a sterol-binding protein that is involved in cholesterol homeostasis by intracellular sterol transport. In this work, we determined the crystal structures of human STARD4 and its Ω1-loop mutant in apo forms at 1.95 and 1.7 Å resolutions, respectively. The structure of human STARD4 displays a conserved α-helix/β-grip fold containing a deep hydrophobic pocket. The Ω1-loop which serves as a lid for the hydrophobic pocket has a closed conformation. The shape of the sterol-binding cavity in the closed form is not complementary to accommodate cholesterol, suggesting that a conformational change of the Ω1-loop is essential for sterol binding. The human STARD4 displayed sterol transfer activity between liposomes, and the mutations in the Ω1-loop and the hydrophobic wall abolished the transfer activity. This study confirms the structural conservation of the STARD4 subfamily proteins and the flexibility of the Ω1-loop and helix α4 required for sterol transport.
Collapse
Affiliation(s)
- Lingchen Tan
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Junsen Tong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|