1
|
Su M, Yuan F, Li T, Wei C. A Non-Gradual Development Process of Cicada Eyes at the End of the Fifth-Instar Nymphal Stage to Obtain Visual Ability. INSECTS 2022; 13:1170. [PMID: 36555080 PMCID: PMC9787698 DOI: 10.3390/insects13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Insects' visual system is directly related to ecology and critical for their survival. Some cicadas present obvious differences in color and ultrastructure of compound eyes between nymphal and adult stages, but little is known about when cicadas obtain their visual ability to deal with the novel above-ground habitat. We use transcriptome analyses and reveal that cicada Meimuna mongolica has a trichromatic color vision system and that the eyes undergo a non-gradual development process at the end of the 5th-instar nymphal stage. The white-eye 5th-instar nymphs (i.e., younger 5th-instar nymphs) have no visual ability because critical components of the visual system are deficient. The transformation of eyes toward possessing visual function takes place after a tipping point in the transition phase from the white-eye period to the subsequent red-eye period, which is related to a decrease of Juvenile Hormone. The period shortly after adult emergence is also critical for eye development. Key differentially-expressed genes related to phototransduction and chromophore synthesis play positive roles for cicadas to adapt to above-ground habitat. The accumulation of ommochromes corresponds to the color change of eyes from white to red and dark brown during the end of the 5th-instar nymphal period. Cuticle tanning leads to eye color changing from dark-brown to light-brown during the early adult stage. We hypothesize that the accumulation of ommochromes occurring at the end of 5th-instar nymphal stage and the early adult stage is not only for cicadas to obtain visual ability, but also is a secure strategy to cope with potential photodamage after emergence.
Collapse
|
2
|
Lewis LLM, Dörschmann P, Seeba C, Thalenhorst T, Roider J, Iloki Assanga SB, Ruiz JCG, Del Castillo Castro T, Rosas-Burgos EC, Plascencia-Jatomea M, Ezquerra Brauer JM, Klettner A. Properties of Cephalopod Skin Ommochromes to Inhibit Free Radicals, and the Maillard Reaction and Retino-Protective Mechanisms in Cellular Models Concerning Oxidative Stress, Angiogenesis, and Inflammation. Antioxidants (Basel) 2022; 11:antiox11081574. [PMID: 36009293 PMCID: PMC9404994 DOI: 10.3390/antiox11081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are pigments of invertebrates that exhibit oxidative stress protection. The aim of this study was to investigate ommochromes extracted from cephalopod’s skin for their ability to inhibit age-related-macular degeneration (AMD)-related factors such as H2O2-induced and iron-dependent oxidative stress (ferroptosis and erastin), accumulation of advanced glycation end-products (AGEs), as well as vascular endothelial growth factor (VEGF), and inflammatory cytokines (interleukin 6 and interleukin 8) secretion. As cell systems, we used primary porcine retinal pigment epithelium (RPE), human retinal pigment epithelium cell line ARPE-19 and uveal melanoma cell line OMM-1. In vitro, ommochromes produced an antiglycation effect by the inhibition of fructosylation reaction. The ommochromes showed protective effects against erastin- induced cell death in ARPE-19. In addition, in long-term stimulation (7 days) ommochromes decreased constitutively secreted VEGF, as well as interleukin 6 and interleukin 8 induced by Poly I:C in primary RPE. No relevant effects were detected in OMM-1 cells. The effects are dependent on the cell system, time of exposition, and concentration. This substance is of interest for further research concerning age-related macular degeneration.
Collapse
Affiliation(s)
- Luján Lidianys María Lewis
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Philipp Dörschmann
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Charlotte Seeba
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Tabea Thalenhorst
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Juan Carlos Gálvez Ruiz
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Teresa Del Castillo Castro
- Department of Research on Polymers and Materials, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Josafat Marina Ezquerra Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Alexa Klettner
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-500-24283
| |
Collapse
|
3
|
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior. Molecules 2022; 27:molecules27144458. [PMID: 35889334 PMCID: PMC9318335 DOI: 10.3390/molecules27144458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.
Collapse
|
4
|
Shilovsky GA. Lability of the Nrf2/Keap/ARE Cell Defense System in Different Models of Cell Aging and Age-Related Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:70-85. [PMID: 35491021 DOI: 10.1134/s0006297922010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The level of oxidative stress in an organism increases with age. Accumulation of damages resulting in the disruption of genome integrity can be the cause of many age-related diseases and appearance of phenotypic and physiological signs of aging. In this regard, the Nrf2 system, which regulates expression of numerous enzymes responsible for the antioxidant defense and detoxification, is of great interest. This review summarizes and analyzes the data on the age-related changes in the Nrf2 system in vivo and in vitro in various organs and tissues. Analysis of published data suggests that the capacity for Nrf2 activation (triggered by the increased level of oxidative stress) steadily declines with age. At the same time, changes in the Nrf2 activity under the stress-free conditions do not have such unambiguous directionality; in many studies, these changes were statistically insignificant, although it is commonly accepted that the level of oxidative stress steadily increases with aging. This review examines the role of cell regulatory systems limiting the ability of Nrf2 to respond to oxidative stress. Senescent cells are extremely susceptible to the oxidative damage due to the impaired Nrf2 signaling. Activation of the Nrf2 pathway is a promising target for new pharmacological or genetic therapeutic strategies. Suppressors of the Nrf2 expression, such as Keap1, GSK3, c-Myc, and Bach1, may contribute to the age-related impairments in the induction of Nrf2-regulated antioxidant genes. Understanding the mechanisms of regulatory cascades linking the programs responsible for the maintenance of homeostasis and cell response to the oxidative stress will contribute to the elucidation of molecular mechanisms underlying aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| |
Collapse
|
5
|
Shilovsky GA, Putyatina TS, Markov AV. Altruism and Phenoptosis as Programs Supported by Evolution. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1540-1552. [PMID: 34937533 PMCID: PMC8678581 DOI: 10.1134/s0006297921120038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a programmed death that has emerged in the process of evolution, sometimes taking the form of an altruistic program. In particular, it is believed to be a weapon against the spread of pandemics in the past and an obstacle in fighting pandemics in the present (COVID). However, on the evolutionary scale, deterministic death is not associated with random relationships (for example, bacteria with a particular mutation), but is a product of higher nervous activity or a consequence of established hierarchy that reaches its maximal expression in eusocial communities of Hymenoptera and highly social communities of mammals. Unlike a simple association of individuals, eusociality is characterized by the appearance of non-reproductive individuals as the highest form of altruism. In contrast to primitive programs for unicellular organisms, higher multicellular organisms are characterized by the development of behavior-based phenoptotic programs, especially in the case of reproduction-associated limitation of lifespan. Therefore, we can say that the development of altruism in the course of evolution of sociality leads in its extreme manifestation to phenoptosis. Development of mathematical models for the emergence of altruism and programmed death contributes to our understanding of mechanisms underlying these paradoxical counterproductive (harmful) programs. In theory, this model can be applied not only to insects, but also to other social animals and even to the human society. Adaptive death is an extreme form of altruism. We consider altruism and programmed death as programmed processes in the mechanistic and adaptive sense, respectively. Mechanistically, this is a program existing as a predetermined chain of certain responses, regardless of its adaptive value. As to its adaptive value (regardless of the degree of "phenoptoticity"), this is a characteristic of organisms that demonstrate high levels of kinship, social organization, and physical association typical for higher-order individuals, e.g., unicellular organisms forming colonies with some characteristics of multicellular animals or colonies of multicellular animals displaying features of supraorganisms.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
6
|
Non-invasive in vivo spectroscopy using a monitor calibrator: A case of planarian feeding and digestion statuses. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Disruption of kynurenine pathway reveals physiological importance of tryptophan catabolism in Henosepilachna vigintioctopunctata. Amino Acids 2021; 53:1091-1104. [PMID: 34089391 DOI: 10.1007/s00726-021-03009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Kynurenine pathway is critically important to catabolize tryptophan, to produce eye chromes, and to protect nervous system in insects. However, several issues related to tryptophan degradation remain to be clarified. In the present paper, we identified three genes (karmoisin, vermilion and cardinal) involved in kynurenine pathway in Henosepilachna vigintioctopunctata. The karmoisin and cardinal were highly expressed in the pupae and adults having compound eyes. Consistently, high-performance liquid chromatography result showed that three ommochrome peaks were present in adult heads rather than bodies (thoraces, legs, wings and abdomens). RNA interference (RNAi)-aided knockdown of vermilion caused accumulation of tryptophan in both adult heads and bodies, disappearance of ommochromes in the heads and a complete loss of eye color in both pupae and adults. Depletion of cardinal brought about excess of 3-hydroxykynurenine and insufficient ommochromes in the heads and decolored eyes. RNAi of karmoisin resulted in a decrease in ommochromes in the heads, and a partial loss of eye color. Moreover, a portion of karmoisin-, vermilion- or cardinal-silenced adults exhibited negative phototaxis, whereas control beetles showed positive phototaxis. Furthermore, dysfunctions of tryptophan catabolism impaired climbing ability. Our findings clearly illustrated several issues related to kynurenine pathway and provided a new insight into the physiological importance of tryptophan catabolism in H. vigintioctopunctata.
Collapse
|
8
|
Fujiwara M, Kono N, Hirayama A, Malay AD, Nakamura H, Ohtoshi R, Numata K, Tomita M, Arakawa K. Xanthurenic Acid Is the Main Pigment of Trichonephila clavata Gold Dragline Silk. Biomolecules 2021; 11:563. [PMID: 33921320 PMCID: PMC8070366 DOI: 10.3390/biom11040563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Spider silk is a natural fiber with remarkable strength, toughness, and elasticity that is attracting attention as a biomaterial of the future. Golden orb-weaving spiders (Trichonephila clavata) construct large, strong webs using golden threads. To characterize the pigment of golden T. clavata dragline silk, we used liquid chromatography and mass spectrometric analysis. We found that the major pigment in the golden dragline silk of T. clavata was xanthurenic acid. To investigate the possible function of the pigment, we tested the effect of xanthurenic acid on bacterial growth using gram-negative Escherichia coli and gram-positive Bacillus subtilis. We found that xanthurenic acid had a slight antibacterial effect. Furthermore, to investigate the UV tolerance of the T. clavata threads bleached of their golden color, we conducted tensile deformation tests and scanning electron microscope observations. However, in these experiments, no significant effect was observed. We therefore speculate that golden orb-weaving spiders use the pigment for other purposes, such as to attract their prey in the sunlight.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team: RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (A.D.M.); (K.N.)
| | - Hiroyuki Nakamura
- Spiber Inc.: Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (H.N.); (R.O.)
| | - Rintaro Ohtoshi
- Spiber Inc.: Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (H.N.); (R.O.)
| | - Keiji Numata
- Biomacromolecules Research Team: RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (A.D.M.); (K.N.)
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
9
|
Porter ML, Cronin TW, Dick CW, Simon N, Dittmar K. Visual system characterization of the obligate bat ectoparasite Trichobius frequens (Diptera: Streblidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101007. [PMID: 33341370 DOI: 10.1016/j.asd.2020.101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
As an obligate ectoparasite of bats, the bat fly Trichobius frequens (Diptera: Streblidae) inhabits the same subterranean environment as their nocturnal bat hosts. In this study, we characterize the macromorphology, optical architecture, rhabdom anatomy, photoreceptor absorbance, and opsin expression of the significantly reduced visual system in T. frequens resulting from evolution in the dark. The eyes develop over a 21-22 day pupal developmental period, with pigmentation appearing on pupal day 11. After eclosion as an adult, T. frequens eyes consist of on average 8 facets, each overlying a fused rhabdom consisting of anywhere from 11 to 18 estimated retinula cells. The dimensions of the facets and fused rhabdoms are similar to those measured in other nocturnal insects. T. frequens eyes are functional as shown by expression of a Rh1 opsin forming a visual pigment with a peak sensitivity to 487 nm, similar to other dipteran Rh1 opsins. Future studies will evaluate how individuals with such reduced capabilities for spatial vision as well as sensitivity still capture enough visual information to use flight to maneuver through dark habitats.
Collapse
Affiliation(s)
| | | | - Carl W Dick
- Western Kentucky University, Bowling Green, KY, USA; The Field Museum, Chicago, IL, USA
| | - Noah Simon
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | |
Collapse
|