1
|
Dai C, Liu D, Qin C, Fang J, Cheng G, Xu C, Wang Q, Lu T, Guo Z, Wang J, Zhong T, Guo Q. Guben Kechuan granule attenuates bronchial asthma by inhibiting NF-κB/STAT3 signaling pathway-mediated apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119124. [PMID: 39694430 DOI: 10.1016/j.jep.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic asthma caused by allergies is a lung illness marked by airway remodeling and hyperresponsiveness. Guben Kechuan (GK) granule is a clinically proven formula for treating lung disease. It relieves cough and helps to clear phlegm, but the mechanisms underlying its treatment for asthma are not clear. AIM OF THE STUDY We aimed to elucidate the efficacy and potential mechanisms by which GK ameliorates allergic asthma. MATERIALS AND METHODS Ultra-performance liquid chromatography (UHPLC-LTQ-Orbitrap-MS) identified the main chemical components of GK. The efficacy of GK was studied in an ovalbumin/alum (OVA)/AL(OH)3-sensitized rat model of bronchial asthma by measuring cytokine concentrations in serum and alveolar lavage samples, examining tissue pathology, and performing leukocyte counts. The mechanisms underlying its effectiveness in asthma were investigated by both transcriptomic and proteomic analyses. RESULTS GK relieved asthma-induced airway inflammation and remodeling, reduced inflammatory cell infiltration, and decreased the levels of the inflammatory cytokines TNF-α, IL-4, IL-5, IL-6, and IL-10. Analysis of the transcriptomic and proteomic results found that asthma activated the transcription factors STAT3 and NF-κB and induced oxidative-stress damage and apoptosis. GK was found to reduce Bax and caspase-3 expression, increase Bcl-2 expression, and inhibit asthma-induced apoptosis. GK downregulated the expression of the transcription factors STAT3 and NF-kB, which decreased the inflammatory response. Decreases in CAT, SOD, and GSH reduced asthma-induced oxidative-stress damage. CONCLUSIONS Our findings provide evidence that GK alleviates bronchial asthma by inhibiting apoptosis and oxidative stress damage mediated by the NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chuanhao Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Dewen Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cuiying Qin
- Development Center of Medical Science & Technology National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Jingya Fang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhong Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zuchang Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Critical Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Tianyu Zhong
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Park K, Lee JH, Shin E, Jang HY, Song WJ, Kwon HS, Cho YS, Lee JE, Adcock I, Chung KF, Lee JS, Won S, Kim TB. Single-cell RNA sequencing reveals transcriptional changes in circulating immune cells from patients with severe asthma induced by biologics. Exp Mol Med 2024; 56:2755-2762. [PMID: 39672815 DOI: 10.1038/s12276-024-01368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/15/2024] Open
Abstract
Patients with severe eosinophilic asthma often require systemic medication, including corticosteroids and anti-type 2 (T2) cytokine biologics, to control the disease. While anti-IL5 and anti-IL4Rα antibodies suppress the effects of IL-4, IL-5 and IL-13, the molecular pathways modified by these biologics that are associated with clinical improvement remain unclear. Therefore, we aimed to describe the effects of T2-targeting biologics on the gene expression of blood immune cells. We conducted single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from eight patients with severe eosinophilic asthma treated with mepolizumab, reslizumab, or dupilumab. PBMCs were obtained before the initiation of biologics and at 1- and 6-month timepoints after the initiation of treatment to elucidate treatment-induced changes. During treatment, the proportions of T cells/natural killer (NK) cells, myeloid cells, and B cells did not change. However, the composition of classical monocytes (CMs) changed: IL1B+ CMs were reduced, and S100A+ CMs were increased. The subsets of T cells also changed, and significant downregulation of the NF-κB pathway was observed. The genes related to the NF-κB pathway were suppressed across T/NK, myeloid, and B cells. The transcriptional landscape did not significantly change after the first month of treatment, but marked changes occurred at six-month intervals. In conclusion, regardless of the type of biologics used, suppression of T2-mediated pathways ultimately reduces the expression of genes related to NF-κB signaling in circulating immune cells. Further studies are warranted to identify potential biomarkers related to treatment response and long-term outcomes.Clinical trial registration number: NCT05164939.
Collapse
Affiliation(s)
- Kyungtaek Park
- Institute of Health and Environment, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsoon Shin
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Hye Yoon Jang
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoo Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Ian Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jeong Seok Lee
- Genome Insight, Inc., San Diego, La Jolla, CA, USA.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea.
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea.
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Lin S, Chen M, Lin S, Huang X, Chen W, Wu S. Network pharmacology and experimental verification unraveled the mechanism of Bailing Capsule against asthma. Medicine (Baltimore) 2024; 103:e40391. [PMID: 39495985 PMCID: PMC11537631 DOI: 10.1097/md.0000000000040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Asthma is a serious public health challenge around the world. Recent studies into traditional Chinese medicine preparations for asthma have yielded promising findings regarding Bailing Capsule's potential in bronchial asthma prevention and treatment. This study aims to initially clarify the potential mechanism of Bailing Capsule in the treatment of asthma using network pharmacology and in vitro experimental approaches. Network pharmacology was adopted to detect the active ingredients of Bailing Capsule via Traditional Chinese Medicine Systems Pharmacology Database, and the key targets and signaling pathways in the treatment of asthma were predicted. Docking and molecular dynamics simulations were conducted to verify the most important interactions formed by these probes within different regions of the binding site. The predicted targets were validated in lipopolysaccharide-induced 16HBE cell experiment. Seven active ingredients were screened from Bailing Capsule, 294 overlapping targets matched with asthma were considered potential therapeutic targets, such as SRC, TP53, STAT3, and E1A binding protein P300. The main functional pathways involving these key targets include phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, renin-angiotensin system and other signaling pathways, which were mainly involved in the inflammatory response, apoptosis, and xenobiotic stimulus. Moreover, molecular docking showed that Cerevisterol have higher affinity for SRC, TP53, STAT3, and E1A binding protein P300 than other main active components, which is close to the docking results of the co-crystallized ligands to proteins. Consequently, Cerevisterol was selected for molecular dynamics simulation and the results show that Cerevisterol can bind most tightly to SRC, TP53, and STAT3. Bailing Capsule can promote the growth of 16HBE cell, reduce the production of IL-4, TNF-α and IL-6, and down-regulate the levels of SRC and STAT3 mRNA. This study preliminarily reveals the potential mechanism of Bailing Capsule against asthma with the aid of network pharmacology and in vitro cell experiment, which provided reference and guidance for in-depth research and clinical application.
Collapse
Affiliation(s)
- Shaomei Lin
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Mingzhu Chen
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Shifeng Lin
- Nephrology Department, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, Fujian, China
| | - Xiaowei Huang
- Pharmaceutical Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Wanqiong Chen
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Shuifa Wu
- Pharmaceutical Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
4
|
Zhang Y, Chen L, Ouyang H. Shikonin alleviates asthma phenotypes in mice via an airway epithelial STAT3-dependent mechanism. Open Med (Wars) 2024; 19:20241016. [PMID: 39444792 PMCID: PMC11497215 DOI: 10.1515/med-2024-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Asthma is an inflammatory disease where the balance between Th1/Th2 and Th17/Treg plays a crucial role in its pathogenesis. Shikonin is used to treat a variety of autoimmune diseases due to its good anti-inflammatory activity. However, the effect and mechanism of shikonin on asthma remain unknown. Method Mice were sensitized with ovalbumin (OVA)/house dust mite (HDM) and treated with shikonin. Lung inflammation was assessed histologically and via flow cytometry. Bronchoalveolar lavage fluid (BALF) was analyzed for cell counts and cytokines. Shikonin's impact on p-STAT3 was studied in vivo and in vitro. Results Shikonin inhibited OVA or HDM-induced inflammation and airway hyperresponsiveness. Upon treatment, a restoration of the Th1/Th2 and Th17/Treg balance was observed, evidenced by a reduction in IL-4 and IL-17A levels in BALF, alongside an elevation in interferon-gamma and IL-10. Furthermore, shikonin impeded the infiltration of eosinophils, neutrophils, macrophages, and lymphocytes into lung tissue. The observed decrease in STAT3 phosphorylation and diminished nuclear translocation of p-STAT3 confirmed that shikonin promotes the balance of Th1/Th2 and Th17/Treg by regulating airway epithelial STAT3. Conclusion Shikonin mitigates asthma symptoms through a STAT3-dependent mechanism, indicating its potential as an anti-asthmatic therapeutic agent.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, Xi’an, 710101, China
| | - Lizhan Chen
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, Xi’an, 710101, China
| | - Haifeng Ouyang
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, No. 777 Xitai Road, Xi’an, 710101, China
| |
Collapse
|
5
|
Udjus C, Halvorsen B, Kong XY, Sagen EL, Martinsen M, Yang K, Løberg EM, Christensen G, Skjønsberg OH, Larsen K. Alveolar hypoxia induces organ-specific inflammasome-related inflammation in male mouse lungs. Physiol Rep 2024; 12:e16143. [PMID: 39034131 PMCID: PMC11260499 DOI: 10.14814/phy2.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Inflammation through activation of caspase-1, seems to play a role in pulmonary hypertension induced by alveolar hypoxia. Whether alveolar hypoxia induces caspase-1-mediated inflammation and influx of leukocytes in other organs than the lungs, is not known. Our aim was to explore sites of caspase-1-related inflammation in alveolar hypoxia. Wild type (WT) mice were exposed to environmental hypoxia or room-air, and organs were analyzed. Right heart catheterization was performed after 14 days of alveolar hypoxia in WT mice and mice transplanted with WT or caspase-1-/- bone marrow. Hypoxia induced leukocyte accumulation and increased caspase-1 protein in the lungs, not in other organs. WT mice transplanted with WT or caspase-1-/- bone marrow showed no difference in pulmonary leukocyte accumulation or development of pulmonary hypertension after alveolar hypoxia. Caspase-1 and IL-18 were detected in bronchial epithelium in WT mice, and hypoxia induced IL-18 secretion from bronchial epithelial cells. IL-18 stimulation generated IL-6 mRNA in monocytes. Phosphorylated STAT3 was increased in hypoxic lungs, not in other organs. Alveolar hypoxia induces caspase-1 activation and leukocyte accumulation specific to the lungs, not in other organs. Caspase-1 activation and IL-18 secretion from bronchial epithelial cells might initiate hypoxia-induced inflammation, leading to pulmonary hypertension.
Collapse
Affiliation(s)
- Camilla Udjus
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Bente Halvorsen
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Xiang Yi Kong
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Ellen Lund Sagen
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Marita Martinsen
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
| | - Kuan Yang
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Else Marit Løberg
- Department of PathologyOslo University Hospital Ullevål and University of OsloOsloNorway
| | - Geir Christensen
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- K.G. Jebsen Center for Cardiac ResearchUniversity of OsloOsloNorway
| | - Ole Henning Skjønsberg
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Karl‐Otto Larsen
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
| |
Collapse
|
6
|
Shilovskiy IP, Nikolskii AA, Timotievich ED, Kovchina VI, Vishnyakova LI, Yumashev KV, Vinogradova KV, Kaganova MM, Brylina VE, Tyulyubaev VV, Rusak TE, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. IL-4 regulates neutrophilic pulmonary inflammation in a mouse model of bronchial asthma. Cytokine 2024; 178:156563. [PMID: 38479048 DOI: 10.1016/j.cyto.2024.156563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Neutrophilic pulmonary inflammation in asthmatics substantially exacerbates the severity of the disease leading to resistance to conventional corticosteroid therapy. Many studies established the involvement of Th1- and Th17-cells and cytokines produced by them (IFNg, IL-17A, IL-17F etc.) in neutrophilic pulmonary inflammation. Recent studies revealed that IL-4 - a Th2-cytokine regulates neutrophil effector functions and migration. It was showed that IL-4 substantially reduces neutrophilic inflammation of the skin in a mouse model of cutaneous bacterial infection and blood neutrophilia in a mouse model systemic bacterial infection. However, there are no data available regarding the influence of IL-4 on non-infectious pulmonary inflammation. In the current study we investigated the effects of IL-4 in a previously developed mouse model of neutrophilic bronchial asthma. We showed that systemic administration of IL-4 significantly restricts neutrophilic inflammation of the respiratory tract probably through the suppression of Th1-/Th17-immune responses and downregulation of CXCR2. Additionally, pulmonary neutrophilic inflammation could be alleviated by IL-4-dependant polarization of N2 neutrophils and M2 macrophages, expressing anti-inflammatory TGFβ. Considering these, IL-4 might be used for reduction of exaggerated pulmonary neutrophilic inflammation and overcoming corticosteroid insensitivity of asthma patients.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation.
| | - A A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - E D Timotievich
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - V I Kovchina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - L I Vishnyakova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Yumashev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Vinogradova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - M M Kaganova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V E Brylina
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V V Tyulyubaev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - T E Rusak
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - M E Dyneva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - O M Kurbacheva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - D A Kudlay
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - M R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, 1, Ostrovityanova St., Moscow, Russian Federation
| |
Collapse
|
7
|
Caputo LDS, Alves CDL, Laranjeira IM, Fonseca-Rodrigues D, da Silva Filho AA, Dias ACP, Pinto-Ribeiro F, Pereira Junior ODS, de Paula ACC, Nagato AC, Corrêa JODA. Copaiba oil minimizes inflammation and promotes parenchyma re-epithelization in acute allergic asthma model induced by ovalbumin in BALB/c mice. Front Pharmacol 2024; 15:1356598. [PMID: 38666018 PMCID: PMC11043548 DOI: 10.3389/fphar.2024.1356598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.
Collapse
Affiliation(s)
- Ludmila de Souza Caputo
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina de Lima Alves
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Inês Martins Laranjeira
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | | | - Akinori Cardozo Nagato
- Department of Physiology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | | |
Collapse
|
8
|
Brandao-Rangel MAR, Moraes-Ferreira R, Silva-Reis A, Souza-Palmeira VH, Almeida FM, da Silva Olimpio FR, Oliveira CR, Damaceno-Rodrigues NR, Pesquero JB, Martin L, Aimbire F, Albertini R, Faria SS, Vieira RP. Aerobic physical training reduces severe asthma phenotype involving kinins pathway. Mol Biol Rep 2024; 51:499. [PMID: 38598121 DOI: 10.1007/s11033-024-09474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1β, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1β, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.
Collapse
Affiliation(s)
- Maysa Alves Rodrigues Brandao-Rangel
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Renilson Moraes-Ferreira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Anamei Silva-Reis
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Victor Hugo Souza-Palmeira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Francine Maria Almeida
- Laboratory of Experimental Therapeutic (LIM 20), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - Fabiana Regina da Silva Olimpio
- Post-graduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720, 2º Andar, São Paulo, SP, 04039-002, Brazil
| | - Carlos Rocha Oliveira
- School of Medicine, Anhembi Morumbi University, Avenida Deputado Benedito Matarazzo 6070, São José dos Campos, SP, 12230-002, Brazil
- Post-graduate Program in Biomedical Enginnering, Federal University of São Paulo (UNIFESP), Rua Talim 330, São José dos Campos, SP, 12231-280, Brazil
- GAP Biotech, Rua Comendador Remo Cesaroni 223, São José dos Campos, SP, 12243-020, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cellular Biology (LIM 59 HCFMUSP), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, São Paulo, SP, 04023-062, Brazil
| | - Leonardo Martin
- Department of Biophysics, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, São Paulo, SP, 04023-062, Brazil
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish, Academy of Sciences (IMB-PAS), Lodowa 106, Lodz, 93-232, Poland
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Flavio Aimbire
- Post-graduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720, 2º Andar, São Paulo, SP, 04039-002, Brazil
| | - Regiane Albertini
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Sara Socorro Faria
- Post-graduate Programs in Humam Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (UniEvavngelica), Avenida Universitária Km3,5, Anápolis, GO, 75083-515, Brazil
| | - Rodolfo P Vieira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil.
- Post-graduate Programs in Humam Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (UniEvavngelica), Avenida Universitária Km3,5, Anápolis, GO, 75083-515, Brazil.
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos, SP, 12245-520, Brazil.
| |
Collapse
|
9
|
Sha J, Zhang M, Feng J, Shi T, Li N, Jie Z. Promyelocytic leukemia zinc finger controls type 2 immune responses in the lungs by regulating lineage commitment and the function of innate and adaptive immune cells. Int Immunopharmacol 2024; 130:111670. [PMID: 38373386 DOI: 10.1016/j.intimp.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.
Collapse
Affiliation(s)
- Jiafeng Sha
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zhuo Z, Nie J, Xie B, Wang F, Shi M, Jiang Y, Zhu W. A comprehensive study of Ephedra sinica Stapf-Schisandra chinensis (Turcz.) Baill herb pair on airway protection in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117614. [PMID: 38113990 DOI: 10.1016/j.jep.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedra sinica Stapf (Mahuang) and Schisandra chinensis (Turcz.) Baill (Wuweizi) are commonly utilized in traditional Chinese medicine for the treatment of cough and asthma. The synergistic effect of Mahuang-Wuweizi herb pair enhances their efficacy in alleviating respiratory symptoms, making them extensively employed in the management of respiratory disorders. Although previous studies have demonstrated the therapeutic potential of Mahuang-Wuweizi in pulmonary fibrosis, the precise mechanism underlying their effectiveness against asthma remains elusive. AIM OF THE STUDY The objective of this study is to investigate the mechanism underlying the preventive and therapeutic effects of Mahuang-Wuweizi herb pair on asthma progression, focusing on airway inflammation and airway remodeling. MATERIALS AND METHODS The active constituents and potential mechanisms of Mahuang-Wuweizi in the management of asthma were elucidated through network pharmacology analysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to detect the main components of Mahuang-Wuweizi decoction. A rat model of bronchial asthma was established, and the effects of Mahuang-Wuweizi were investigated using hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The results of network pharmacological prediction showed that Mahuang had 22 active components and Wuweizi had 8 active components, with 225 potential targets. 1159 targets associated with asthma and 115 targets that overlap between drugs and diseases were identified. These include interleukin-6 (IL-6), tumor necrosis factor (TNF), Tumor Protein 53, interleukin-1β (IL-1β), as well as other essential targets. Additionally, there is a potential correlation between asthma and Phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (AKT) signaling pathway, calcium ion channels, nuclear factor-kappa B (NF-κB) signaling pathway, and other signaling pathways. The animal experiment results demonstrated that treatment with Mahuang and Wuweizi, in comparison to the model group, exhibited improvements in lung tissue pathological injury, reduction in collagen fiber accumulation around the airway and proliferation of airway smooth muscle, decrease in concentration levels of IL-6, TNF-α and IL-1β in lung tissue, as well as alleviation of airway inflammation. Furthermore, Mahuang and Wuweizi suppressed the expression of phospholipase C (PLC), transient receptor potential channel 1 (TRPC1), myosin light chain kinase (MLCK), NF-κB P65 protein in ovalbumin (OVA)-sensitized rat lung tissue and downregulated the mRNA expression of PLC, TRPC1, PI3K, AKT, NF-κB P65 in asthmatic rats. These findings were consistent with network pharmacological analysis. CONCLUSION The results show that the synergistic interaction between Mahuang and Wuweizi occur, and they can effectively reduce airway remodeling and airway inflammation induced by inhaling OVA in bronchial asthma rats by inhibiting the expression of PLC/TRPC1/PI3K/AKT/NF-κB signaling pathway. Therefore, Mahuang and Wuweizi may be potential drugs to treat asthma.
Collapse
Affiliation(s)
- Zushun Zhuo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Jianhua Nie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Bin Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fei Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Min Shi
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yini Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Weifeng Zhu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
11
|
Du L, Lu H, Xiao Y, Guo Z, Li Y. Prediction and analysis of quality markers for Chuantieling gel patches based on HPLC fingerprinting and network pharmacology. Biomed Chromatogr 2024; 38:e5773. [PMID: 38048642 DOI: 10.1002/bmc.5773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
The Chuantieling gel patch (CGP), a traditional Chinese medicine compound, is an external treatment for asthma. It has shown remarkable effectiveness in alleviating asthma-related airway hyperresponsiveness and inflammation. Nevertheless, there is currently no information available regarding the analysis of quality markers for CGP, and there is a need for further improvement in quality control research. In this study, we developed an HPLC fingerprinting method for CGP and conducted a comprehensive methodological investigation. We assessed the similarity among 10 batches of CGP, identified common peaks, and quantified the content of seven major quality markers. Furthermore, we built a network pharmacology-based 'active ingredients-targets-pathways-diseases' network to forecast the potential mechanisms of action for the primary active components in asthma treatment. Our findings demonstrated that the developed CGP fingerprinting and content determination methods were consistent and trustworthy. We verified the existence of 25 shared peaks and successfully identified 7 chromatographic peaks, including sinigrin thiocyanate, ephedrine hydrochloride, methyleugenol, imperatorin, cinnamaldehyde, emodin, and 6-gingerol, using reference standards. The network pharmacology analysis suggested that these seven active components may target proteins such as STAT3 (signal transducer and activator of transcription 3), MAPK3 (mitogen-activated protein kinase 3), and TP53 (tumor protein P53) and influence various diseases through pathways including cancer pathways, hepatitis B, and PI3K-Akt (phosphoinositide 3-kinase-protein kinase B) signaling. This study provides insight into the complex multicomponent composition of CGP, and the predictive analysis through network pharmacology sets the stage for uncovering the mechanisms responsible for the therapeutic effects of CGP.
Collapse
Affiliation(s)
- Lixin Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huiling Lu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yifei Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Ren Y, Li X, Zhang Y, Yan Z. Xiaoqinglong decoction suppresses childhood cough variant asthma and inhibited the body inflammatory response by regulating IL-6/STAT3 signalling pathway. Ann Med Surg (Lond) 2023; 85:5469-5477. [PMID: 37915641 PMCID: PMC10617864 DOI: 10.1097/ms9.0000000000001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
Xiaoqinglong decoction (XQLD) is widely used clinically in the treatment of childhood cough variant asthma (CVA). However, its potential mechanism is still unknown. In the present study, the authors investigate the biological network and signalling pathway of XQLD in treatment of childhood CVA using network pharmacology-based analysis and experimental validation. By using the Bioinformatics Analysis Tool Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, the authors confirmed the correlation between XQLD and asthma, and the authors screened 1338 potential target genes of Mahuang and Guizhi, the most active herbs in XQLD. By overlapping "Childhood asthma-related genes" of DisGeNET database, the authors identified 58 intersecting genes of Childhood asthma and 1338 target genes of Mahuang and Guizhi. The intersecting genes were used to construct the protein-to-protein interaction and performed Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Gene Ontology enrichment analysis demonstrated 359 Biological Process terms, 16 Cellular Component terms, and 26 Molecular Function terms. Meantime, 75 terms of Kyoto Encyclopedia of Genes and Genomes signalling pathway were involved in enrichment analysis. These candidates showed a significant correlation with inflammatory response and positive regulation of tyrosine phosphorylation of STAT protein. In addition, XQLD treatment significantly upregulated serum interferon-γ expression, and downregulated serum interlukin-6 expression of CVA mice. XQLD treatment significantly inhibited phosphorylation of STAT3 in bronchial-lung tissues. Our data suggest that XQLD effectively alleviated bronchial-lung tissue damage in CVA mice and inhibited the body inflammatory response by regulating interlukin-6/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yuzhe Ren
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences
- Departments ofPediatrics
| | - Xing Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin
| | - Yuanjie Zhang
- Outpatient, Shenzhen Hospital, Beijing University of Chinese Medicine
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Qiao X, Tang J, Dou L, Yang S, Sun Y, Mao H, Yang D. Dental Pulp Stem Cell-Derived Exosomes Regulate Anti-Inflammatory and Osteogenesis in Periodontal Ligament Stem Cells and Promote the Repair of Experimental Periodontitis in Rats. Int J Nanomedicine 2023; 18:4683-4703. [PMID: 37608819 PMCID: PMC10441659 DOI: 10.2147/ijn.s420967] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Dental pulp stem cell-derived exosomes (DPSC-EXO), which have biological characteristics similar to those of metrocytes, have been found to be closely associated with tissue regeneration. Periodontitis is an immune inflammation and tissue destructive disease caused by plaque, resulting in alveolar bone loss and periodontal epithelial destruction. It is not clear whether DPSC-EXO can be used as an effective therapy for periodontal regeneration. The purpose of this study was not only to verify the effect of DPSC-EXO on reducing periodontitis and promoting periodontal tissue regeneration, but also to reveal the possible mechanism. Methods DPSC-EXO was isolated by ultracentrifugation. Then it characterized by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA) and Western Blot. In vitro, periodontal ligament stem cells (PDLSCs) were treated with DPSC-EXO, the abilities of cell proliferation, migration and osteogenic potential were evaluated. Furthermore, we detected the expression of IL-1β, TNF-αand key proteins in the IL-6/JAK2/STAT3 signaling pathway after simulating the inflammatory environment by LPS. In addition, the effect of DPSC-EXO on the polarization phenotype of macrophages was detected. In vivo, the experimental periodontitis in rats was established and treated with DPSC-EXO or PBS. After 4 weeks, the maxillae were collected and detected by micro-CT and histological staining. Results DPSC-EXO promoted the proliferation, migration and osteogenesis of PDLSCs in vitro. DPSC-EXO also regulated inflammation by inhibiting the IL-6/JAK2/STAT3 signaling pathway during acute inflammatory stress. In addition, the results showed that DPSC-EXO could polarize macrophages from the M1 phenotype to the M2 phenotype. In vivo, we found that DPSC-EXO could effectively reduce alveolar bone loss and promote the healing of the periodontal epithelium in rats with experimental periodontitis. Conclusion DPSC-EXO plays an important role in inhibiting periodontitis and promoting tissue regeneration. This study provides a promising acellular therapy for periodontitis.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Jie Tang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Lei Dou
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
14
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Akhmerova YN, Shpakova TA, Grammatikati KS, Mitrofanov SI, Kazakova PG, Mkrtchian AA, Zemsky PU, Pilipenko MN, Feliz NV, Frolova LV, Frolovskaya AA, Yudin VS, Keskinov AA, Kraevoy SA, Yudin SM, Skvortsova VI. Genetic Variants Associated with Bronchial Asthma Specific to the Population of the Russian Federation. Acta Naturae 2023; 15:31-41. [PMID: 37153512 PMCID: PMC10154776 DOI: 10.32607/actanaturae.11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 05/09/2023] Open
Abstract
Bronchial asthma (BA) is a disease that still lacks an exhaustive treatment protocol. In this regard, the global medical community pays special attention to the genetic prerequisites for the occurrence of this disease. Therefore, the search for the genetic polymorphisms underlying bronchial asthma has expanded considerably. As the present study progressed, a significant amount of scientific medical literature was analyzed and 167 genes reported to be associated with the development of bronchial asthma were identified. A group of participants (n = 7,303) who had voluntarily provided their biomaterial (venous blood) to be used in the research conducted by the Federal Medical Biological Agency of Russia was formed to subsequently perform a bioinformatic verification of known associations and search for new ones. This group of participants was divided into four cohorts, including two sex-distinct cohorts of individuals with a history of asthma and two sex-distinct cohorts of apparently healthy individuals. A search for polymorphisms was made in each cohort among the selected genes, and genetic variants were identified whose difference in occurrence in the different cohorts was statistically significant (significance level less than 0.0001). The study revealed 11 polymorphisms that affect the development of asthma: four genetic variants (rs869106717, rs1461555098, rs189649077, and rs1199362453), which are more common in men with bronchial asthma compared to apparently healthy men; five genetic variants (rs1923038536, rs181066119, rs143247175, rs140597386, and rs762042586), which are more common in women with bronchial asthma compared to apparently healthy women; and two genetic variants (rs1219244986 and rs2291651) that are rare in women with a history of asthma.
Collapse
Affiliation(s)
- Y. N. Akhmerova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - T. A. Shpakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - K. S. Grammatikati
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. I. Mitrofanov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. G. Kazakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Mkrtchian
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. U. Zemsky
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - M. N. Pilipenko
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - N. V. Feliz
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - L. V. Frolova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Frolovskaya
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. S. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Keskinov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. A. Kraevoy
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. M. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. I. Skvortsova
- Federal Medical Biological Agency (FMBA of Russia), Moscow, 123182 Russian Federation
| |
Collapse
|