von Seggern N, Oehlsen N, Moudrakovski I, Stegbauer L. Photomodulation of the Mechanical Properties and Photo-Actuation of Chitosan-Based Thin Films Modified with an Azobenzene-Derivative.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308939. [PMID:
38037759 DOI:
10.1002/smll.202308939]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 12/02/2023]
Abstract
A sophisticated comprehension of the impacts of photoisomerization and photothermal phenomena on biogenic and responsive materials can provide a guiding framework for future applications. Herein, the procedure to manufacture homogeneous chitosan-based smart thin films are reported by incorporating the light-responsive azobenzene-derivative Sodium-4-[(4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)diazen-yl]-benzenesulfonate (TEGABS) in the biopolymer through electrostatic interactions. When irradiated with UV-light the TEGABS/chitosan films show a biresponse, comprising the E→Z photoisomerization with a half-life of 13 - 20 h and the light-induced evaporation of residual moisture leading to an increase in the reduced indentation modulus (up to 49%) and hardness. Freestanding films of TEGABS/chitosan show actuation up to 13° while irradiated with UV-light. This work shows the potential of biogenic polysaccharides in the design of biresponsive materials with photomodulated mechanical properties and unveils the link between the humidity of the environment, residual moisture, and the photomodulation of the mechanical properties.
Collapse