1
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Mikhailov OV, Chachkov DV. Copper (IV) Stabilization in Macrocyclic Complexes with 3,7,11,15-Tetraazaporphine, Its Di[benzo]- or Tetra[benzo] Derivatives and Oxide Anion: Quantum-Chemical Research. MATERIALS 2020; 13:ma13143162. [PMID: 32679851 PMCID: PMC7412188 DOI: 10.3390/ma13143162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
Using the data of a quantum chemical modeling of molecular structures obtained by the density functional theory (DFT), the possibility of the existence of a copper macrocyclic complexes with 3,7,11,15-tetraazaaporphine, trans-di[benzo] 3,7,11,15-tetraazaaporphine or tetra[benzo] 3,7,11,15-tetraazaaporphine and oxide anion where oxidation state of copper is IV, was shown. The values of the parameters of molecular structures and NBO analysis for such complexes were presented, too.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, Kazan 420015, Russia
- Correspondence:
| | - Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences–Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS”, Lobachevskii Street 2/31, Kazan 420111, Russia;
| |
Collapse
|
3
|
Csonka R, Lakk-Bogáth D, Gömöry Á, Drahos L, Giorgi M, Speier G, Szilágyi RK, Kaizer J. Non-innocent ground state electronic structure of a polynuclear copper complex with picolinate bridges. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Klein JEMN, Mandal D, Ching WM, Mallick D, Que L, Shaik S. Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. J Am Chem Soc 2017; 139:18705-18713. [PMID: 29179544 DOI: 10.1021/jacs.7b11300] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An H/D kinetic isotope effect (KIE) of 80 is found at -20 °C for the oxidation of 9,10-dihydroanthracene by [FeIV(O)(TMCS)]+, a complex supported by the tetramethylcyclam (TMC) macrocycle with a tethered thiolate. This KIE value approaches that previously predicted by DFT calculations. Other [FeIV(O)(TMC)(anion)] complexes exhibit values of 20, suggesting that the thiolate ligand of [FeIV(O)(TMCS)]+ plays a unique role in facilitating tunneling. Calculations show that tunneling is most enhanced (a) when the bond asymmetry between C-H bond breaking and O-H bond formation in the transition state is minimized, and (b) when the electrostatic interactions in the O---H---C moiety are maximal. These two factors-which peak for the best electron donor, the thiolate ligand-afford a slim and narrow barrier through which the H-atom can tunnel most effectively.
Collapse
Affiliation(s)
- Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Debasish Mandal
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Wei-Min Ching
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dibyendu Mallick
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| |
Collapse
|
5
|
Lakk-Bogáth D, Csonka R, Speier G, Réglier M, Simaan AJ, Naubron JV, Giorgi M, Lázár K, Kaizer J. Formation, Characterization, and Reactivity of a Nonheme Oxoiron(IV) Complex Derived from the Chiral Pentadentate Ligand asN4Py. Inorg Chem 2016; 55:10090-10093. [PMID: 27690396 DOI: 10.1021/acs.inorgchem.6b01089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chiral pentadentate low-spin (S = 1) oxoiron(IV) complex [FeIV(O)(asN4Py)]2+ (2) was synthesized and spectroscopically characterized. Its formation kinetics, reactivity, and (enantio)selectivity in an oxygen-atom-transfer reaction was investigated in detail and compared to a similar pentadentate ligand-containing system.
Collapse
Affiliation(s)
- Dóra Lakk-Bogáth
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Róbert Csonka
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313 , 13397 Marseille, France
| | - A Jalila Simaan
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313 , 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole FR1739 , 13397 Marseille, France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole FR1739 , 13397 Marseille, France
| | - Károly Lázár
- Research Centre for Energy, Hungarian Academy of Sciences , H-1525 Budapest, Hungary
| | - József Kaizer
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| |
Collapse
|
6
|
Engelmann X, Monte-Pérez I, Ray K. Oxidationsreaktionen mit bioinspirierten einkernigen Nicht-Häm-Oxidometallkomplexen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600507] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xenia Engelmann
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Inés Monte-Pérez
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Kallol Ray
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
7
|
Engelmann X, Monte-Pérez I, Ray K. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. Angew Chem Int Ed Engl 2016; 55:7632-49. [DOI: 10.1002/anie.201600507] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Xenia Engelmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Inés Monte-Pérez
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Kallol Ray
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
8
|
Synthesis, isolation and characterization of dinuclear oxidodiiron(III) complexes modified by monodentate pyridines. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Rana S, Dey A, Maiti D. Mechanistic elucidation of C-H oxidation by electron rich non-heme iron(IV)-oxo at room temperature. Chem Commun (Camb) 2015; 51:14469-72. [PMID: 26277913 DOI: 10.1039/c5cc04803f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-heme iron(IV)-oxo species form iron(III) intermediates during hydrogen atom abstraction (HAA) from the C-H bond. While synthesizing a room temperature stable, electron rich, non-heme iron(IV)-oxo compound, we obtained iron(III)-hydroxide, iron(III)-alkoxide and hydroxylated-substrate-bound iron(II) as the detectable intermediates. The present study revealed that a radical rebound pathway was operative for benzylic C-H oxidation of ethylbenzene and cumene. A dissociative pathway for cyclohexane oxidation was established based on UV-vis and radical trap experiments. Interestingly, experimental evidence including O-18 labeling and mechanistic study suggested an electron transfer mechanism to be operative during C-H oxidation of alcohols (e.g. benzyl alcohol and cyclobutanol). The present report, therefore, unveils non-heme iron(IV)-oxo promoted substrate-dependent C-H oxidation pathways which are of synthetic as well as biological significance.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
10
|
Mitra M, Nimir H, Demeshko S, Bhat SS, Malinkin SO, Haukka M, Lloret-Fillol J, Lisensky GC, Meyer F, Shteinman AA, Browne WR, Hrovat DA, Richmond MG, Costas M, Nordlander E. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. Inorg Chem 2015. [PMID: 26198840 DOI: 10.1021/ic5029564] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.
Collapse
Affiliation(s)
- Mainak Mitra
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Hassan Nimir
- ‡Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, State of Qatar
| | - Serhiy Demeshko
- §Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Satish S Bhat
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Sergey O Malinkin
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Matti Haukka
- ⊥Department of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä, FI-40014, Finland
| | - Julio Lloret-Fillol
- ¶QBIS, Department of Chemistry, University de Girona, Campus Montilivi, E-17071 Girona, Spain
| | - George C Lisensky
- ∥Department of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Franc Meyer
- §Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Albert A Shteinman
- #Institute of Problems of Chemical Physics, Chernogolovka, Moscow District, 142432, Russian Federation
| | - Wesley R Browne
- ∇Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - David A Hrovat
- ○Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas 76203, United States.,◆Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Michael G Richmond
- ◆Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Miquel Costas
- ¶QBIS, Department of Chemistry, University de Girona, Campus Montilivi, E-17071 Girona, Spain
| | - Ebbe Nordlander
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
11
|
Shopov DY, Rudshteyn B, Campos J, Batista VS, Crabtree RH, Brudvig GW. Stable Iridium(IV) Complexes of an Oxidation-Resistant Pyridine-Alkoxide Ligand: Highly Divergent Redox Properties Depending on the Isomeric Form Adopted. J Am Chem Soc 2015; 137:7243-50. [DOI: 10.1021/jacs.5b04185] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dimitar Y. Shopov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jesús Campos
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Landaeta VR, Rodríguez-Lugo RE. Catalytic oxygenation of organic substrates: Toward greener ways for incorporating oxygen. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Kazaryan A, Baerends EJ. Ligand Field Effects and the High Spin–High Reactivity Correlation in the H Abstraction by Non-Heme Iron(IV)–Oxo Complexes: A DFT Frontier Orbital Perspective. ACS Catal 2015. [DOI: 10.1021/cs501721y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andranik Kazaryan
- VU University Amsterdam, Theoretical Chemistry,
FEW, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Evert Jan Baerends
- VU University Amsterdam, Theoretical Chemistry,
FEW, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Döhlert P, Irran E, Kretschmer R, Enthaler S. Synthesis, characterization and application of iron N-substituted imidazole complexes with the motif ClFeL4OFeCl3. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2014.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Naiya S, Giri S, Biswas S, Drew MG, Ghosh A. Structural and theoretical investigation on two dinuclear Fe(III) complexes of tridentate NNO-donor Schiff base ligands. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Emerging technologies for metabolite generation and structural diversification. Bioorg Med Chem Lett 2013; 23:5471-83. [DOI: 10.1016/j.bmcl.2013.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022]
|