1
|
Li H, Chen S, Wang M, Shi S, Zhao W, Xiong G, Zhou J, Qu J. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous soil. Appl Microbiol Biotechnol 2024; 108:24. [PMID: 38159115 DOI: 10.1007/s00253-023-12850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
On the basis of good phosphate solubilization ability of a lactic acid bacteria (LAB) strain Limosilactobacillus sp. LF-17, bacterial agent was prepared and applied to calcareous soil to solubilize phosphate and promote the growth of maize seedlings in this study. A pot experiment showed that the plant growth indicators, phosphorus content, and related enzyme activity of the maize rhizospheric soils in the LF treatment (treated with LAB) were the highest compared with those of the JP treatment (treated with phosphate solubilizing bacteria, PSB) and the blank control (CK). The types of organic acids in maize rhizospheric soil were determined through LC-MS, and 12 acids were detected in all the treatments. The abundant microbes belonged to the genera of Lysobacter, Massilia, Methylbacillus, Brevundimonas, and Limosilactobacillus, and they were beneficial to dissolving phosphate or secreting growth-promoting phytohormones, which were obviously higher in the LF and JP treatments than in CK as analyzed by high-throughput metagenomic sequencing methods. In addition, the abundance values of several enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, and Carbohydrate-Active Enzymes (CAZys), which were related to substrate assimilation and metabolism, were the highest in the LF treatment. Therefore, aside from phosphate-solubilizing microorganisms, LAB can be used as environmentally friendly crop growth promoters in agriculture and provide another viable option for microbial fertilizers. KEY POINTS: • The inoculation of LAB strain effectively promoted the growth and chlorophyll synthesis of maize seedlings. • The inoculation of LAB strain significantly increased the TP content of maize seedlings and the AP concentration of the rhizosphere soil. • The inoculation of LAB strain increased the abundances of the dominant beneficial functional microbes in the rhizosphere soil.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Siyuan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuoshuo Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjian Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guoyang Xiong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Tang H, Zhong Z, Hou J, You L, Zhao Z, Kwok LY, Bilige M. Metagenomic analysis revealed the potential of lactic acid bacteria in improving natural saline-alkali land. Int Microbiol 2024; 27:311-324. [PMID: 37386210 DOI: 10.1007/s10123-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Management and improving saline-alkali land is necessary for sustainable agricultural development. We conducted a field experiment to investigate the effects of spraying lactic acid bacteria (LAB) on the cucumber and tomato plant soils. Three treatments were designed, including spraying of water, viable or sterilized LAB preparations to the soils of cucumber and tomato plants every 20 days. Spraying sterilized or viable LAB could reduce the soil pH, with a more obvious effect by using viable LAB, particularly after multiple applications. Metagenomic sequencing revealed that the soil microbiota in LAB-treated groups had higher alpha-diversity and more nitrogen-fixing bacteria compared with the water-treated groups. Both viable and sterilized LAB, but not water application, increased the complexity of the soil microbiota interactive network. The LAB-treated subgroups were enriched in some KEGG pathways compared with water or sterilized LAB subgroups, such as environmental information processing-related pathways in cucumber plant; and metabolism-related pathways in tomato plant, respectively. Redundancy analysis revealed association between some soil physico-chemical parameters (namely soil pH and total nitrogen) and bacterial biomarkers (namely Rhodocyclaceae, Pseudomonadaceae, Gemmatimonadaceae, and Nitrosomonadales). Our study demonstrated that LAB is a suitable strategy for decreasing soil pH and improving the microbial communities in saline-alkali land.
Collapse
Affiliation(s)
- Hai Tang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Jingqing Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Menghe Bilige
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
- Key Laboratory of Dairy Products Processing, Scientific Observation and Experiment Station of Utilization of Agricultural Microbial Resources in Northeast Region, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
3
|
Andreev N, Ronteltap M, Boincean B, Lens PNL. Lactic acid fermentation of human excreta for agricultural application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:890-900. [PMID: 29207302 DOI: 10.1016/j.jenvman.2017.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/19/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Studies show that source separated human excreta have a fertilizing potential with benefits to plant growth and crop yield similar or exceeding that of mineral fertilizers. The main challenges in fertilizing with excreta are pathogens, and an increased risk of eutrophication of water bodies in case of runoff. This review shows that lactic acid fermentation of excreta reduces the amount of pathogens, minimizes the nutrient loss and inhibits the production of malodorous compounds, thus increasing its agricultural value. Pathogens (e.g., Enterobacteriacea, Staphylococcus and Clostridium) can be reduced by 7 log CFUg-1 during 7-10 days of fermentation. However, more resistant pathogens (e.g. Ascaris) are not always efficiently removed. Direct application of lacto-fermented faeces to agriculture may be constrained by incomplete decomposition, high concentrations of organic acids or insufficient hygienization. Post-treatment by adding biochar, vermi-composting, or thermophilic composting stabilizes and sanitizes the material. Pot and field experiments on soil conditioners obtained via lactic acid fermentation and post treatment steps (composting or biochar addition) demonstrated increased crop yield and growth, as well as improved soil quality, in comparison to unfertilized controls.
Collapse
Affiliation(s)
- Nadejda Andreev
- UNESCO-IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands.
| | - Mariska Ronteltap
- UNESCO-IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands
| | - Boris Boincean
- Research Institute for Field Crops, Selectia, 28 Calea Ieşilor str, MD 3101 Balti, Moldavia
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands
| |
Collapse
|
4
|
Andreev N, Ronteltap M, Boincean B, Wernli M, Zubcov E, Bagrin N, Borodin N, Lens PNL. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:63-69. [PMID: 28448847 DOI: 10.1016/j.jenvman.2017.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
During storage of urine, urea is biologically decomposed to ammonia, which can be lost through volatilization and in turn causes significant unpleasant smell. In response, lactic acid fermentation of urine is a cost-effective technique to decrease nitrogen volatilization and reduce odour emissions. Fresh urine (pH = 5.2-5.3 and NH4+-N = 1.2-1.3 g L-1) was lacto-fermented for 36 days in closed glass jars with a lactic acid bacterial inoculum from sauerkraut juice and compared to untreated, stored urine. In the lacto-fermented urine, the pH was reduced to 3.8-4.7 and the ammonium content by 22-30%, while the pH of the untreated urine rose to 6.1 and its ammonium content increased by 32% due to urea hydrolysis. The concentration of lactic acid bacteria in lacto-fermented urine was 7.3 CFU ml-1, suggesting that urine is a suitable growth medium for lactic acid bacteria. The odour of the stored urine was subjectively perceived by four people to be twice as strong as that of lacto-fermented samples. Lacto-fermented urine induced increased radish germination compared to stored urine (74-86% versus 2-31%). Adding a lactic acid bacterial inoculum to one week old urine in the storage tanks in a urine-diverting dry toilet reduced the pH from 8.9 to 7.7 after one month, while the ammonium content increased by 35%, probably due to the high initial pH of the urine. Given that the hydrolyzed stale urine has a high buffering capacity, the lactic acid bacterial inoculum should be added to the urine storage tank of a UDDT before urine starts to accumulate there to increase the efficiency of the lactic acid fermentation.
Collapse
Affiliation(s)
- N Andreev
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands.
| | - M Ronteltap
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands.
| | - B Boincean
- Research Institute for Field Crops, Selectia, 28 Calea Ieşilor str., MD 3101, Baltsy, Republic of Moldova.
| | - M Wernli
- School of Design, V810, Jockey Club Innovation Tower, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - E Zubcov
- Institute of Zoology, Laboratory of Hydrobiology and Ecotoxicology, 1 Academiei str., MD-2028, Chisinau, Republic of Moldova.
| | - N Bagrin
- Institute of Zoology, Laboratory of Hydrobiology and Ecotoxicology, 1 Academiei str., MD-2028, Chisinau, Republic of Moldova.
| | - N Borodin
- Institute of Zoology, Laboratory of Hydrobiology and Ecotoxicology, 1 Academiei str., MD-2028, Chisinau, Republic of Moldova.
| | - P N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands.
| |
Collapse
|
5
|
Khalaf EM, Raizada MN. Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 2016; 16:131. [PMID: 27349509 PMCID: PMC4924336 DOI: 10.1186/s12866-016-0743-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endophytes are microbes that colonize plant internal tissues without causing disease. In particular, seed-associated endophytes may be vectors for founder microbes that establish the plant microbiome, which may subsequently contribute beneficial functions to their host plants including nutrient acquisition and promotion of plant growth. The Cucurbitaceae family of gourds (e.g., cucumbers, melons, pumpkin, squash), including its fruits and seeds, is widely consumed by humans. However, there is limited data concerning the taxonomy and functions of seed-associated endophytes across the Cucurbitaceae family. Here, bacteria from surface-sterilized seeds of 21 curcurbit varieties belonging to seven economically important species were cultured, classified using 16S rRNA gene sequencing, and subjected to eight in vitro functional tests. RESULTS In total, 169 unique seed-associated bacterial strains were cultured from selected cucurbit seeds. Interestingly, nearly all strains belonged to only two phyla (Firmicutes, Proteobacteria) and only one class within each phyla (Bacilli, γ-proteobacteria, respectively). Bacillus constituted 50 % of all strains and spanned all tested cucurbit species. Paenibacillus was the next most common genus, while strains of Enterobacteriaceae and lactic acid bacteria were also cultured. Phylogenetic trees showed limited taxonomic clustering of strains by host species. Surprisingly, 33 % of strains produced the plant hormone, indole-3-acetic acid (auxin), known to stimulate the growth of fruits/gourds and nutrient-acquiring roots. The next most common nutrient acquisition traits in vitro were (in rank order): nitrogen fixation/N-scavenging, phosphate solubilisation, siderophore secretion, and production of ACC deaminase. Secretion of extracellular enzymes required for nutrient acquisition, endophyte colonization and/or community establishment were observed. Bacillus strains had the potential to contribute all tested functional traits to their hosts. CONCLUSION The seeds of economically important cucurbits tested in this study have a culturable core microbiota consisting of Bacillus species with potential to contribute diverse nutrient acquisition and growth promotion activities to their hosts. These microbes may lead to novel seed inoculants to assist sustainable food production. Given that cucurbit seeds are consumed by traditional societies as a source of tryptophan, the precursor for auxin, we discuss the possibility that human selection inadvertently facilitated auxin-mediated increases in gourd size.
Collapse
Affiliation(s)
- Eman M Khalaf
- />Department of Plant Agriculture, University of Guelph, Guelph, N1G 2W1 ON Canada
- />Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Manish N Raizada
- />Department of Plant Agriculture, University of Guelph, Guelph, N1G 2W1 ON Canada
| |
Collapse
|
6
|
Giassi V, Kiritani C, Kupper KC. Bacteria as growth-promoting agents for citrus rootstocks. Microbiol Res 2016; 190:46-54. [PMID: 27393998 DOI: 10.1016/j.micres.2015.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/01/2015] [Accepted: 12/05/2015] [Indexed: 10/21/2022]
Abstract
The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp.) was able to promote increase in two parameters assessed, height and number of leaves. When the bacterial isolates were used in mixture there was not promoted growth of plants on rootstocks. This fact may be associated with the different mechanisms of action of each bacteria involved or with the presence of competition among the microorganisms of the mixture.
Collapse
Affiliation(s)
- Valdionei Giassi
- Graduate Program in Agricultural Ecology and Rural Development, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, SP CEP 13600-970, Brazil; Centro de Pesquisa Mokiti Okada, Ipeúna, SP CEP 13537-000, Brazil
| | - Camila Kiritani
- Centro de Pesquisa Mokiti Okada, Ipeúna, SP CEP 13537-000, Brazil
| | - Katia Cristina Kupper
- Graduate Program in Agricultural Ecology and Rural Development, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, SP CEP 13600-970, Brazil; Sylvio Moreira Citriculture Center/IAC, Laboratory Plant Pathology and Biological Control, CEP 13490-970 Cordeirópolis, SP, Brazil.
| |
Collapse
|