1
|
Oliulla H, Mizan MFR, Ashrafudoulla M, Meghla NS, Ha AJW, Park SH, Ha SD. The challenges and prospects of using cold plasma to prevent bacterial contamination and biofilm formation in the meat industry. Meat Sci 2024; 217:109596. [PMID: 39089085 DOI: 10.1016/j.meatsci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The risk of foodborne disease outbreaks increases when the pathogenic bacteria are able to form biofilms, and this presents a major threat to public health. An emerging non-thermal cold plasma (CP) technology has proven a highly effective method for decontaminating meats and their products and extended their shelf life. CP treatments have ability to reduce microbial load and, biofilm formation with minimal change of color, pH value, and lipid oxidation of various meat and meat products. The CP technique offers many advantages over conventional processing techniques due to its layout flexibility, nonthermal behavior, affordability, and ecological sustainability. The technology is still in its infancy, and continuous research efforts are needed to realize its full potential in the meat industry. This review addresses the basic principles and the impact of CP technology on biofilm formation, meat quality (including microbiological, color, pH value, texture, and lipid oxidation), and microbial inactivation pathways and also the prospects of this technology.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Nigar Sultana Meghla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Grand Hyatt Hotel Jeju, 12 Noyeon Ro, Jeju, Jeju-Do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
2
|
Zhurina MV, Bogdanov KI, Gannesen AV, Mart’yanov SV, Plakunov VK. Microplastics as a New Ecological Niche For Multispecies Microbial Biofilms within the Plastisphere. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
3
|
Gannesen A, Schelkunov M, Geras'kina O, Makarova N, Sukhacheva M, Danilova N, Ovcharova M, Mart'yanov S, Pankratov T, Muzychenko D, Zhurina M, Feofanov A, Botchkova E, Plakunov V. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in M icrococcus luteus strain C01 isolated from human skin. Biofilm 2021; 3:100058. [PMID: 34729469 PMCID: PMC8543384 DOI: 10.1016/j.bioflm.2021.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10-9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT-PCR demonstrated reproducible upregulation of genes encoding Fe-S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
Collapse
Affiliation(s)
- A.V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
- Corresponding author.
| | - M.I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - O.V. Geras'kina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N.E. Makarova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - M.V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - N.D. Danilova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - S.V. Mart'yanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - T.A. Pankratov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - D.S. Muzychenko
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E.A. Botchkova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - V.K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Mart’yanov SV, Botchkova EA, Plakunov VK, Gannesen AV. The Impact of Norepinephrine on Mono-Species and Dual-Species Staphylococcal Biofilms. Microorganisms 2021; 9:820. [PMID: 33924447 PMCID: PMC8070549 DOI: 10.3390/microorganisms9040820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/17/2023] Open
Abstract
The effect of norepinephrine ("NE") on Gram-negative bacteria is well characterized; however, little is known about the impact of NE on cutaneous Gram-positive skin residents, especially staphylococci. In this study, the impact of NE on monospecies and dual-species biofilms of Staphylococcus epidermidis and S. aureus model strains was investigated for the first time. Biofilms were grown in two different models (on polytetrafluoroethylene ("PTFE") cubes and glass microfiber filters ("GMFFs")) and additionally kinetic measurements of bacterial growth was performed. We have shown that NE can affect the biofilm formation of both species with a strong dependence on aerobic or anaerobic culture conditions in different models. It was shown that S. epidermidis suppresses S. aureus growth in dual-species biofilms and that NE can accelerate this process, contributing to the competitive behavior of staphylococci.
Collapse
Affiliation(s)
- Sergey Vladislavovich Mart’yanov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (S.V.M.); (V.K.P.)
| | - Ekaterina Alexandrovna Botchkova
- Laboratory of Microbiology of Anthropogenic Habitats, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Vladimir Konstantinovich Plakunov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (S.V.M.); (V.K.P.)
| | - Andrei Vladislavovich Gannesen
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (S.V.M.); (V.K.P.)
| |
Collapse
|
5
|
Babushkina IV, Ulyanov VY, Mamonova IA, Shpinyak SP. The Effect of Azithromycin on Biofilms Formation by Pathogens of Implant-Associated Infection in Large Joints. Bull Exp Biol Med 2020; 169:798-801. [PMID: 33108560 DOI: 10.1007/s10517-020-04982-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 11/28/2022]
Abstract
We studied the effect of subbacteriostatic azithromycin concentrations on the formation of microbial biofilms by Pseudomonas aeruginosa strains that caused implant-associated infection of large joints. Azithromycin in subinhibitory for planktonic cells concentrations 0.01-0.02 μg/ml stimulated biofilm formation by both clinical and reference P. aeruginosa strains, while in concentrations of 1 μg/ml and higher completely inhibited the growth of both reference and clinical plankton P. aeruginosa strains, but stimulated biofilm formation. Increasing azithromycin concentration to 10 μg/ml led to inhibition of P. aeruginosa biofilm growth.
Collapse
Affiliation(s)
- I V Babushkina
- Research Institute of Traumatology, Orthopedics, and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation, Saratov, Russia.
| | - V Yu Ulyanov
- Research Institute of Traumatology, Orthopedics, and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation, Saratov, Russia
| | - I A Mamonova
- Research Institute of Traumatology, Orthopedics, and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation, Saratov, Russia
| | - S P Shpinyak
- Research Institute of Traumatology, Orthopedics, and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation, Saratov, Russia
| |
Collapse
|
6
|
Danilova ND, Solovyeva TV, Mart’yanov SV, Zhurina MV, Gannesen AV. Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Plakunov VK, Nikolaev YA, Gannesen AV, Chemaeva DS, Zhurina MV. A New Approach to Detection of the Protective Effect of Escherichia coli on Gram-Positive Bacteria in Binary Biofilms in the Presence of Antibiotics. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Mane SG, Katagi KS, Bhasme P, Pattar S, Wei Q, Joshi SD. Design, synthesis, antibiofilm, quorum sensing inhibition, anticancer and docking studies of novel 2-(4-acridine-9-ylamino)isoindoline-1,3-dione. CHEMICAL DATA COLLECTIONS 2019; 20:100198. [DOI: 10.1016/j.cdc.2019.100198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716040147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Phillips CA. Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carol A. Phillips
- University of Northampton; Boughton Green Road Northampton NN2 7AL UK
| |
Collapse
|
12
|
Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|