1
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li X, Liu Q, Gao Y, Zang P, Zheng T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity. BMC PLANT BIOLOGY 2024; 24:647. [PMID: 38977968 PMCID: PMC11229274 DOI: 10.1186/s12870-024-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 2100147, China
| | - Yugang Gao
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Zheng
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
3
|
Liu J, Zhou X, Wang T, Fan L, Liu S, Wu N, Xu A, Qian X, Li Z, Jiang M, Zhou J, Dong W. Construction and comparison of synthetic microbial consortium system (SMCs) by non-living or living materials immobilization and application in acetochlor degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129460. [PMID: 35803189 DOI: 10.1016/j.jhazmat.2022.129460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The microbial degradation of pesticides by pure or mixed microbial cultures has been thoroughly explored, however, they are still difficult to apply in real environmental remediation. Here, we constructed a synthetic microbial consortium system (SMCs) through the immobilization technology by non-living or living materials to improve the acetochlor degradation efficiency. Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1 were isolated for the SMCs construction. The free-floating consortium with the composition ratio of 1:2:2 (Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1) demonstrated 94.8% degradation of acetochlor, and the accumulation of intermediate metabolite 2-methyl-6-ethylaniline was decreased by 3 times. The immobilized consortium using composite materials showed synergistic effects on the acetochlor degradation with maximum degradation efficiency of 97.81%. In addition, a novel immobilization method with the biofilm of Myxococcus xanthus DK1622 as living materials was proposed. The maximum 96.62% degradation was obtained in non-trophic media. Furthermore, the immobilized SMCs showed significantly enhanced environmental robustness, reusability and stability. The results indicate the promising application of the immobilization methods using composite and living materials in pollutant-contaminated environments.
Collapse
Affiliation(s)
- Jingyuan Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoli Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Tong Wang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shixun Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Nan Wu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Anming Xu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiujuan Qian
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Li
- Key Laboratory of Agriculture Environmental Microbiology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, PR China
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
4
|
Ha DD. Degradation of isoproturon in vitro by a mix of bacterial strains isolated from arable soil. Can J Microbiol 2022; 68:605-613. [PMID: 35896041 DOI: 10.1139/cjm-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoproturon (IPU) is widely used to control annual grasses and broad leaf weeds in cereal crops. In this study, four IPU-degrading bacterial strains, i.e., Sphingomonas sp. ISP1, Arthrobacter sp. ISP2, Acinetobacter baumannii 4IA and Pseudomonas sp. ISP3, were isolated from agricultural soil. The mixed culture of four isolates completely degraded the herbicide at 100 mg/L within 10 days. During IPU degradation, several transient accumulations of the metabolites, including 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, 4-isopropylaniline, and 4-toluidine, were also identified. Moreover, the inoculation of the isolated mixed culture into the soil from a mountain with no previous herbicide application increased the degradation rate by 51% of the herbicide on average. Furthermore, bioaugmentation with isolated bacteria in the soil resulted in short term variations in bacterial structure compared to the unaugmented soil. The findings of this study were instrumental in understanding the mechanisms of pesticide breakdown and bioremediation in liquid media and soil.
Collapse
Affiliation(s)
- Duc Danh Ha
- Dong Thap University, 457959, Cao Lanh, Viet Nam;
| |
Collapse
|
5
|
Duc HD, Thuy NTD, Thanh LU, Tuong TD, Oanh NT. Degradation of Diuron by a Bacterial Mixture and Shifts in the Bacterial Community During Bioremediation of Contaminated Soil. Curr Microbiol 2021; 79:11. [PMID: 34905076 DOI: 10.1007/s00284-021-02685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Diuron, a phenylurea herbicide, has been extensively applied in controlling a wide range of weeds in several crops. In the current study, a mixed culture of three bacterial strains, i.e., Bacillus subtilis DU1, Acinetobacter baumannii DU, and Pseudomonas sp. DUK, isolated from sugarcane soil, completely degraded diuron and 3,4-DCA in liquid media at 20 mg L-1 within 48 h. During diuron degradation, a few metabolites (DCPMU, DCPU, and 3,4-DCA) were produced. Further determination of ring-cleavage pathways demonstrated that Acinetobacter baumannii DU and Pseudomonas fluorescens DUK degraded diuron and 3,4-DCA via ortho-cleavage. In contrast, Bacillus subtilis DU transformed these compounds via meta-cleavage pathways. Moreover, diuron caused a significant shift in the bacterial community in soil without diuron history. The augmentation of mountain soil with the isolated bacteria resulted in nearly three times higher degradation rate of diuron than the degradation by indigenous microorganisms. This study provides important information on in situ diuron bioremediation from contaminated sites by bioaugmentation with a mixed bacterial culture.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam.
| | - Nguyen Thi Dieu Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Uyen Thanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| | - Tran Duc Tuong
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| | - Nguyen Thi Oanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| |
Collapse
|