1
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Roy Choudhury S, Heflin B, Taylor E, Koss B, Avaritt NL, Tackett AJ. CRISPR/dCas9-KRAB-Mediated Suppression of S100b Restores p53-Mediated Apoptosis in Melanoma Cells. Cells 2023; 12:730. [PMID: 36899866 PMCID: PMC10000373 DOI: 10.3390/cells12050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Overexpression of S100B is routinely used for disease-staging and for determining prognostic outcomes in patients with malignant melanoma. Intracellular interactions between S100B and wild-type (WT)-p53 have been demonstrated to limit the availability of free WT-p53 in tumor cells, inhibiting the apoptotic signaling cascade. Herein, we demonstrate that, while oncogenic overexpression of S100B is poorly correlated (R < 0.3; p > 0.05) to alterations in S100B copy number or DNA methylation in primary patient samples, the transcriptional start site and upstream promoter of the gene are epigenetically primed in melanoma cells with predicted enrichment of activating transcription factors. Considering the regulatory role of activating transcription factors in S100B upregulation in melanoma, we stably suppressed S100b (murine ortholog) by using a catalytically inactive Cas9 (dCas9) fused to a transcriptional repressor, Krüppel-associated box (KRAB). Selective combination of S100b-specific single-guide RNAs and the dCas9-KRAB fusion significantly suppressed expression of S100b in murine B16 melanoma cells without noticeable off-target effects. S100b suppression resulted in recovery of intracellular WT-p53 and p21 levels and concomitant induction of apoptotic signaling. Expression levels of apoptogenic factors (i.e., apoptosis-inducing factor, caspase-3, and poly-ADP ribose polymerase) were altered in response to S100b suppression. S100b-suppressed cells also showed reduced cell viability and increased susceptibility to the chemotherapeutic agents, cisplatin and tunicamycin. Targeted suppression of S100b therefore offers a therapeutic vulnerability to overcome drug resistance in melanoma.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Pediatric Hematology-Oncology, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Billie Heflin
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Erin Taylor
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Brian Koss
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nathan L. Avaritt
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J. Tackett
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Zhou B, Stueve TR, Mihalakakos EA, Miao L, Mullen D, Wang Y, Liu Y, Luo J, Tran E, Siegmund KD, Lynch SK, Ryan AL, Offringa IA, Borok Z, Marconett CN. Comprehensive epigenomic profiling of human alveolar epithelial differentiation identifies key epigenetic states and transcription factor co-regulatory networks for maintenance of distal lung identity. BMC Genomics 2021; 22:906. [PMID: 34922464 PMCID: PMC8684104 DOI: 10.1186/s12864-021-08152-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Disruption of alveolar epithelial cell (AEC) differentiation is implicated in distal lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma that impact morbidity and mortality worldwide. Elucidating underlying disease pathogenesis requires a mechanistic molecular understanding of AEC differentiation. Previous studies have focused on changes of individual transcription factors, and to date no study has comprehensively characterized the dynamic, global epigenomic alterations that facilitate this critical differentiation process in humans. RESULTS We comprehensively profiled the epigenomic states of human AECs during type 2 to type 1-like cell differentiation, including the methylome and chromatin functional domains, and integrated this with transcriptome-wide RNA expression data. Enhancer regions were drastically altered during AEC differentiation. Transcription factor binding analysis within enhancer regions revealed diverse interactive networks with enrichment for many transcription factors, including NKX2-1 and FOXA family members, as well as transcription factors with less well characterized roles in AEC differentiation, such as members of the MEF2, TEAD, and AP1 families. Additionally, associations among transcription factors changed during differentiation, implicating a complex network of heterotrimeric complex switching in driving differentiation. Integration of AEC enhancer states with the catalog of enhancer elements in the Roadmap Epigenomics Mapping Consortium and Encyclopedia of DNA Elements (ENCODE) revealed that AECs have similar epigenomic structures to other profiled epithelial cell types, including human mammary epithelial cells (HMECs), with NKX2-1 serving as a distinguishing feature of distal lung differentiation. CONCLUSIONS Enhancer regions are hotspots of epigenomic alteration that regulate AEC differentiation. Furthermore, the differentiation process is regulated by dynamic networks of transcription factors acting in concert, rather than individually. These findings provide a roadmap for understanding the relationship between disruption of the epigenetic state during AEC differentiation and development of lung diseases that may be therapeutically amenable.
Collapse
Affiliation(s)
- B Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - T R Stueve
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - E A Mihalakakos
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - L Miao
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - D Mullen
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Y Wang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Y Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - J Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - E Tran
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - K D Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - S K Lynch
- Department of Engineering, Test Manufacturing Group, MAXIM Integrated Products, Sunnyvale, CA, 95134, USA
| | - A L Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - I A Offringa
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Z Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - C N Marconett
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Akhlaq S, Panicker NG, Philip PS, Ali LM, Dudley JP, Rizvi TA, Mustafa F. A cis-Acting Element Downstream of the Mouse Mammary Tumor Virus Major Splice Donor Critical for RNA Elongation and Stability. J Mol Biol 2018; 430:4307-4324. [PMID: 30179605 DOI: 10.1016/j.jmb.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mouse mammary tumor virus (MMTV) encodes a functional signal peptide, a cleavage product of envelope and Rem proteins. Signal peptide interacts with a 3' cis-acting RNA element, the Rem-responsive element (RmRE), to facilitate expression of both unspliced genomic (gRNA) and spliced mRNAs. An additional RmRE has been proposed at the 5' end of the genome, facilitating nuclear export of the unspliced gRNA, whereas the 3' RmRE could facilitate translation of all other mRNAs, including gRNA. RESULTS To address this hypothesis, a series of mutations were introduced into a 24-nt region found exclusively in the unspliced gRNA. Mutant clones using MMTV or human cytomegalovirus promoters were tested in both transient and stable transfections to determine their effect on gRNA nuclear export, stability, and translation. Nuclear export of the gRNA was affected only in a small mutant subset in stably transfected Jurkat T cells. Quantitative real-time RT-PCR of actinomycin D-treated cells expressing MMTV revealed that multiple mutants were severely compromised for RNA expression and stability. Both genomic and spliced nuclear RNAs were reduced, leading to abrogation of Gag and Env protein expressed from unspliced and spliced mRNAs, respectively. RT-PCRs with multiple primer pairs indicated failure to elongate genomic MMTV transcripts beyond ~500 nt compared to the wild type in a cell line-dependent manner. CONCLUSIONS MMTV contains a novel cis-acting element downstream of the major splice donor critical for facilitating MMTV gRNA elongation and stability. Presence of a mirror repeat within the element may represent important viral/host factor binding site(s) within MMTV gRNA.
Collapse
Affiliation(s)
- Shaima Akhlaq
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Neena G Panicker
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Pretty S Philip
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Lizna M Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Jaquelin P Dudley
- LaMontagne Center for Infectious Diseases, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX 78712, USA.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Fane M, Harris L, Smith AG, Piper M. Nuclear factor one transcription factors as epigenetic regulators in cancer. Int J Cancer 2017; 140:2634-2641. [PMID: 28076901 DOI: 10.1002/ijc.30603] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
Tumour heterogeneity poses a distinct obstacle to therapeutic intervention. While the initiation of tumours across various physiological systems is frequently associated with signature mutations in genes that drive proliferation and bypass senescence, increasing evidence suggests that tumour progression and clonal diversity is driven at an epigenetic level. The tumour microenvironment plays a key role in driving diversity as cells adapt to demands imposed during tumour growth, and is thought to drive certain subpopulations back to a stem cell-like state. This stem cell-like phenotype primes tumour cells to react to external cues via the use of developmental pathways that facilitate changes in proliferation, migration and invasion. Because the dynamism of this stem cell-like state requires constant chromatin remodelling and rapid alterations at regulatory elements, it is of great therapeutic interest to identify the cell-intrinsic factors that confer these epigenetic changes that drive tumour progression. The nuclear factor one (NFI) family are transcription factors that play an important role in the development of many mammalian organ systems. While all four family members have been shown to act as either oncogenes or tumour suppressors across various cancer models, evidence has emerged implicating them as key epigenetic regulators during development and within tumours. Notably, NFIs have also been shown to regulate chromatin accessibility at distal regulatory elements that drive tumour cell dissemination and metastasis. Here we summarize the role of the NFIs in cancer, focusing largely on the potential mechanisms associated with chromatin remodelling and epigenetic modulation of gene expression.
Collapse
Affiliation(s)
- Mitchell Fane
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia.,Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology 2010; 35:792-805. [PMID: 19924110 PMCID: PMC3055607 DOI: 10.1038/npp.2009.188] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 01/03/2023]
Abstract
Aberrant biochemical processes in the brain frequently go along with subtle shifts of the cellular epigenetic profile that might support the pathogenic progression of psychiatric disorders. Although recent reports have implied the ability of certain antidepressants and mood stabilizers to modulate epigenetic parameters, studies comparing the actions of these compounds under the same conditions are lacking. In this study, we screened amitriptyline (AMI), venlafaxine, citalopram, as well as valproic acid (VPA), carbamazepine, and lamotrigine for their potential actions on global and local epigenetic modifications in rat primary astrocytes. Among all drugs, VPA exposure evoked the strongest global chromatin modifications, including histone H3/H4 hyperacetylation, 2MeH3K9 hypomethylation, and DNA demethylation, as determined by western blot and luminometric methylation analysis, respectively. CpG demethylation occurred independently of DNA methyltransferase (DNMT) suppression. Strikingly, AMI also induced slight cytosine demethylation, paralleled by the reduction in DNMT enzymatic activity, without affecting the global histone acetylation status. Locally, VPA-induced chromatin modifications were reflected at the glutamate transporter (GLT-1) promoter as shown by bisulfite sequencing and acetylated histone H4 chromatin immunoprecipitation analysis. Distinct CpG sites in the distal part of the GLT-1 promoter were demethylated and enriched in acetylated histone H4 in response to VPA. For the first time, we could show that these changes were associated with an enhanced transcription of this astrocyte-specific gene. In contrast, AMI failed to stimulate GLT-1 transcription and to alter promoter methylation levels. In conclusion, VPA and AMI globally exerted chromatin-modulating activities using different mechanisms that divergently precipitated at an astroglial gene locus.
Collapse
Affiliation(s)
- Tatjana Perisic
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Nicole Zimmermann
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Thomas Kirmeier
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Maria Asmus
- Pharmacogenetics Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Francesca Tuorto
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Genetics and Biophysics ‘A. Buzzati-Traverso', CNR, Naples, Italy
| | - Manfred Uhr
- Pharmacogenetics Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Florian Holsboer
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
- Pharmacogenetics Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Theo Rein
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| | - Jürgen Zschocke
- Chaperone Research Group, Max-Planck-Institute of Psychiatry, Munich, Bavaria, Germany
| |
Collapse
|