1
|
Tillib SV, Goryainova OS. Extending Linker Sequences between Antigen-Recognition Modules Provides More Effective Production of Bispecific Nanoantibodies in the Periplasma of E. coli. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:933-941. [PMID: 38880653 DOI: 10.1134/s0006297924050134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024]
Abstract
Technology of production of single-domain antibodies (NANOBODY® molecules, also referred to as nanoantibodies, nAb, or molecules based on other stable protein structures) and their derivatives to solve current problems in biomedicine is becoming increasingly popular. Indeed, the format of one small, highly soluble protein with a stable structure, fully functional in terms of specific recognition, is very convenient as a module for creating multivalent, bi-/oligo-specific genetically engineered targeting molecules and structures. Production of nAb in periplasm of E. coli bacterium is a very convenient and fairly universal way to obtain analytical quantities of nAb for the initial study of the properties of these molecules and selection of the most promising nAb variants. The situation is more complicated with production of bi- and multivalent derivatives of the initially selected nAbs under the same conditions. In this work, extended linker sequences (52 and 86 aa) between the antigen-recognition modules in the cloned expression constructs were developed and applied in order to increase efficiency of production of bispecific nanoantibodies (bsNB) in the periplasm of E. coli bacteria. Three variants of model bsNBs described in this study were produced in the periplasm of bacteria and isolated in soluble form with preservation of functionality of all the protein domains. If earlier our attempts to produce bsNB in the periplasm with traditional linkers no longer than 30 aa were unsuccessful, the extended linkers used here provided a significantly more efficient production of bsNB, comparable in efficiency to the traditional production of original monomeric nAbs. The use of sufficiently long linkers could presumably be useful for increasing efficiency of production of other bsNBs and similar molecules in the periplasm of E. coli bacteria.
Collapse
Affiliation(s)
- Sergei V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oksana S Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
3
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Ivanova TI, Klabukov ID, Krikunova LI, Poluektova MV, Sychenkova NI, Khorokhorina VA, Vorobyev NV, Gaas MY, Baranovskii DS, Goryainova OS, Sachko AM, Shegay PV, Kaprin AD, Tillib SV. Prognostic Value of Serum Transferrin Analysis in Patients with Ovarian Cancer and Cancer-Related Functional Iron Deficiency: A Retrospective Case-Control Study. J Clin Med 2022; 11:jcm11247377. [PMID: 36555993 PMCID: PMC9786287 DOI: 10.3390/jcm11247377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: There are no reliable and widely available markers of functional iron deficiency (FID) in cancer. The aim of the study was to evaluate the role of transferrin (Tf) as a marker of cancer of the ovary (CrO) and related FID. (2) Methods: The study groups consisted of 118 patients with CrO and 69 control females. Blood serum iron status was determined on a Beckman Coulter AU (USA) analyzer. Tf quantification was performed by immunoturbidimetry. The relative contents of apo- and holo-Tf (iron-free and iron-saturated Tf, respectively) were determined in eight patients and a control female by immunochromatographic analysis based on the use of monoclonal single-domain antibodies (nanobodies). (3) Results: Four groups of patients with different iron statuses were selected according to ferritin and transferrin saturation values: absolute iron deficiency (AID) (n = 42), FID (n = 70), iron overload (n = 4), normal iron status (n = 2). The groups differed significantly in Tf values (p < 0.0001). Lower values of Tf were associated with FID. Furthermore, FID is already found in the initial stages of CrO (26%). Immunosorbents based on nanobodies revealed the accumulation of apo-Tf and the decrease in holo-Tf in patients with CrO. (4) Conclusions: Tf may be a promising tool for diagnosing both CrO and associated FID.
Collapse
Affiliation(s)
- Tatiana I. Ivanova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Ilya D. Klabukov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
- Correspondence:
| | - Ludmila I. Krikunova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Marina V. Poluektova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Natalia I. Sychenkova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Vera A. Khorokhorina
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Nikolay V. Vorobyev
- Department of Oncology, Radiotherapy and Plastic Surgery, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, 119991 Moscow, Russia
- P.A. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 2nd Botkinsky Proezd 3, 125284 Moscow, Russia
| | - Margarita Ya. Gaas
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Denis S. Baranovskii
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Anastasiya M. Sachko
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Peter V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| |
Collapse
|
5
|
Tillib SV, Goryainova OS, Sachko AM, Ivanova TI, Gaas MY, Vorob’ev NV, Kaprin AD, Shegay PV. Single-Domain Antibodies Used to Pretreat the Human Urinary Proteome in Cancer Biomarker Testing. Mol Biol 2022. [DOI: 10.1134/s0026893322040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
7
|
Tillib SV, Goryainova OS, Sachko AM, Ivanova TI. High-Affinity Single-Domain Antibodies for Analyzing Human Apo- and Holo-Transferrin. Acta Naturae 2022; 14:98-102. [PMID: 35923568 PMCID: PMC9307980 DOI: 10.32607/actanaturae.11663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
A highly efficient technology for generating new monoclonal single-domain recombinant antibodies (nanobodies) was used to obtain a panel of nanobodies recognizing human apo- and/or holo-transferrin. This article is devoted to the primary analysis of the properties of two different variants of the new nanobodies obtained by us, as well as to the demonstration of the unique potential of their application for diagnostic studies. The simultaneous use of immunosorbents based on these nanobodies apparently makes it possible to detect changes in the relative abundance of apo- and holo-transferrin in human biological fluids. Such changes could potentially be indicative of an increased risk or degree of development of pathological processes, such as malignant neoplasms in humans.
Collapse
Affiliation(s)
- S. V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - O. S. Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. M. Sachko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. I. Ivanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
8
|
The Evolution of Molecular Recognition: From Antibodies to Molecularly Imprinted Polymers (MIPs) as Artificial Counterpart. J Funct Biomater 2022; 13:jfb13010012. [PMID: 35225975 PMCID: PMC8883926 DOI: 10.3390/jfb13010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular recognition is a useful property shared by various molecules, such as antibodies, aptamers and molecularly imprinted polymers (MIPs). It allows these molecules to be potentially involved in many applications including biological and pharmaceutical research, diagnostics, theranostics, therapy and drug delivery. Antibodies, naturally produced by plasma cells, have been exploited for this purpose, but they present noticeable drawbacks, above all production cost and time. Therefore, several research studies for similar applications have been carried out about MIPs and the main studies are reported in this review. MIPs, indeed, are more versatile and cost-effective than conventional antibodies, but the lack of toxicity studies and their scarce use for practical applications, make it that further investigations on this kind of molecules need to be conducted.
Collapse
|
9
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
10
|
Simões B, Guedens WJ, Keene C, Kubiak-Ossowska K, Mulheran P, Kotowska AM, Scurr DJ, Alexander MR, Broisat A, Johnson S, Muyldermans S, Devoogdt N, Adriaensens P, Mendes PM. Direct Immobilization of Engineered Nanobodies on Gold Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17353-17360. [PMID: 33845569 PMCID: PMC8153533 DOI: 10.1021/acsami.1c02280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2021] [Indexed: 05/25/2023]
Abstract
Single-domain antibodies, known as nanobodies, have great potential as biorecognition elements for sensors because of their small size, affinity, specificity, and robustness. However, facile and efficient methods of nanobody immobilization are sought that retain their maximum functionality. Herein, we describe the direct immobilization of nanobodies on gold sensors by exploiting a modified cysteine strategically positioned at the C-terminal end of the nanobody. The experimental data based on secondary ion mass spectrometry, circular dichroism, and surface plasmon resonance, taken together with a detailed computational work (molecular dynamics simulations), support the formation of stable and well-oriented nanobody monolayers. Furthermore, the nanobody structure and activity is preserved, wherein the nanobody is immobilized at a high density (approximately 1 nanobody per 13 nm2). The strategy for the spontaneous nanobody self-assembly is simple and effective and possesses exceptional potential to be used in numerous sensing platforms, ranging from clinical diagnosis to environmental monitoring.
Collapse
Affiliation(s)
- Bárbara Simões
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Wanda J. Guedens
- Institute
for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
| | - Charlie Keene
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Paul Mulheran
- Department
of Chemical & Process Engineering, University
of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Anna M. Kotowska
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - David J. Scurr
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Morgan R Alexander
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alexis Broisat
- Laboratory
of Bioclinical Radiopharmaceutics, Université
Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Steven Johnson
- Department
of Electronic Engineering, University of
York, York YO19 5DD, United Kingdom
| | - Serge Muyldermans
- Cellular
and Molecular Immunology laboratory, Vrije
Universiteit Brussel (VUB), BE-1050 Brussels, Belgium
| | - Nick Devoogdt
- In
vivo Cellular and Molecular Imaging laboratory, Vrije Universiteit Brussel (VUB), BE-1090 Brussels, Belgium
| | - Peter Adriaensens
- Institute
for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
| | - Paula M. Mendes
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
11
|
Lamtha T, Tabtimmai L, Bangphoomi K, Kiriwan D, Malik AA, Chaicumpa W, van Bergen En Henegouwen PMP, Choowongkomon K. Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development. Protein Eng Des Sel 2021; 34:6462358. [PMID: 34908139 DOI: 10.1093/protein/gzab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bang Sue, Bangkok 10800, Thailand
| | - Kunan Bangphoomi
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Aijaz A Malik
- Center of Data Mining and Biomedical Informatics, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Laboratory for Research and Technology Development, Bangkok Noi, Bangkok 10700, Thailand
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Kravchenko Y, Chumakov SP, Frolova EI. New anti-mesothelin single-domain antibodies and cell models for developing targeted breast cancer therapy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most triple negative breast cancers (TNBC) are characterized by elevated expression of mesothelin (MSLN), a cell surface antigen and one of the preferred targets for the therapy of solid tumors. Most continuous TNBC cell lines are MSLN-negative, which obstructs the development of MSLN-targeted therapy for TNBC. The aim of this study was to identify TNBC cell lines with MSLN hyperexpression and to obtain single-domain antibodies (nanobodies) capable of recognizing MSLN in TNBC cells. Mesothelin expression levels were measured in the panel of TNBC cell lines by real-time reverse-transcription PCR. PCR results were verified by measuring concentrations of the megakaryocyte potentiating factor (the secreted fragment of the mesothelin precursor) using sandwich ELISA. Immune phage-display VHH fragment libraries were prepared from mononuclear cells of Vicugna pacos using a modified library enrichment protocol. Two nanobody variants with high specificity for the target and Kd of about 140 and 95 nmol, respectively were obtained. Two MSLN+ and three MSLN– cell lines were identified in the TNBC cell lines panel. The nanobodies demonstrated the ability to recognize the target antigen in MSLN+ cells and had the low ability to bind to MSLN– cells. Thus, we found a convenient MSLN+ TNBC cell model for MSLN-targeted therapy testing. The new single-domain antibodies can be used as targeting components of chimeric antigen receptors.
Collapse
Affiliation(s)
- YuE Kravchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - SP Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - EI Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|