Jing M, Zhang H, Li M, Mao Z, Shi X. Silver nanoparticle-decorated TiO
2 nanotube array for solid-phase microextraction and SERS detection of antibiotic residue in milk.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;
255:119652. [PMID:
33773431 DOI:
10.1016/j.saa.2021.119652]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 05/25/2023]
Abstract
The excessive use or abuse of antibiotics on dairy cows leads to residues in milk, which can represent a public health risk. However, in recent years the β-Lactamase was illegally used to degrade residual antibiotics in milk, which makes the traditional antibiotic detection methods ineffective. Therefore, there is an extremely urgent need for multi-analyte analysis techniques for the detection of antibiotic residues. Herein, we reported an ultra-fast, facile, and sensitive solid-phase microextraction (SPME)-surface enhanced Raman scattering (SERS) platform for the detection of degraded antibiotics-2-mercapto-5-methyl-1,3,4-thiadiazole (MMT). The results showed that the log-log plot of SERS intensity to MMT concentration exhibits a superior linear relationship (R2 = 0.992) in the concentration range of 0.5-1000 μM, with a detection limit of 0.11 μM. The silver nanoparticle-decorated TiO2 nanotube array was successfully used as an all-in-one SPME-SERS substrate in the extraction and identification of the antibiotic degradation products in real milk. Due to the rapid pre-treatment, good reproducibility, and self-cleaning, the proposed SPME-SERS method has a great promise to be applied as a powerful tool for on-site detection in the field of food safety.
Collapse