1
|
Punina EO, Gnutikov AA, Nosov NN, Shneyer VS, Rodionov AV. Hybrid Origin of × Leymotrigia bergrothii (Poaceae) as Revealed by Analysis of the Internal Transcribed Spacer ITS1 and trnL Sequences. Int J Mol Sci 2024; 25:11966. [PMID: 39596035 PMCID: PMC11594234 DOI: 10.3390/ijms252211966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
×Leymotrigia bergrothii is a presumed hybrid of Leymus arenarius and Elytrigia repens. This article investigates the hybrid origin and genome composition of this species. These plants are sterile, do not undergo pollination, and do not produce seeds; occasionally, underdeveloped stamens containing abortive pollen grains form in individual spikelets. The karyotype analysis of root meristem cells revealed a diploid chromosome number of 49 in ×L. bergrothii, reported here for the first time. Subsequently, we examined the intragenomic polymorphism of the transcribed spacer ITS1 in several species of Elytrigia, Elymus, Leymus, Hordeum, and Psathyrostachys, and compared the ribotype patterns of these species with those of ×L. bergrothii. It is shown that the St-ribotype variants found in Elytrigia repens and Elytrigia pseudocaesia, as well as the ribotypes of the La family, which dominate in the genome of Leymus arenarius, correspond to major ribotypes in ×L. bergrothii. The ribotypes of the St and La families are present in the nuclear genome of ×L. bergrothii in almost equal proportions. A comparison of intron and exon sequences of the trnL gene in the chloroplast DNA of Leymus arenarius, Elytrigia repens, and ×L. bergrothii showed that this region in ×L. bergrothii is identical or very close to that of Elytrigia repens, suggesting that Elytrigia repens was the cytoplasmic donor to ×L. bergrothii. Thus, our study confirms the hypothesis that this species represents a sterile first-generation hybrid of Leymus arenarius and Elytrigia repens, reproducing vegetatively.
Collapse
Affiliation(s)
- Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander A. Gnutikov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| |
Collapse
|
2
|
Amosova AV, Gnutikov AA, Rodionov AV, Loskutov IG, Nosov NN, Yurkevich OY, Samatadze TE, Zoshchuk SA, Muravenko OV. Genome Variability in Artificial Allopolyploid Hybrids of Avena sativa L. and Avena macrostachya Balansa ex Coss. et Durieu Based on Marker Sequences of Satellite DNA and the ITS1-5.8S rDNA Region. Int J Mol Sci 2024; 25:5534. [PMID: 38791572 PMCID: PMC11122565 DOI: 10.3390/ijms25105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Gnutikov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Igor G. Loskutov
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, Puzanskiy RK, Bagrova TN, Yakhin OI, Rodionov AV, Shishova MF. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J Fungi (Basel) 2023; 10:11. [PMID: 38248921 PMCID: PMC10817546 DOI: 10.3390/jof10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.
Collapse
Affiliation(s)
- Andrey P Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Alexey A Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Anastasiia O Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Tatyana R Kudriashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina M Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yuri V Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Peter M Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Yulia V Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Tatyana N Bagrova
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Oleg I Yakhin
- Institute of Biochemistry and Genetics, The Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexander V Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Belyakov EA, Mikhaylova YV, Machs EM, Zhurbenko PM, Rodionov AV. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. Sci Rep 2022; 12:21610. [PMID: 36517537 PMCID: PMC9750990 DOI: 10.1038/s41598-022-25954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.
Collapse
Affiliation(s)
- Evgeny A. Belyakov
- grid.464570.40000 0001 1092 3616Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Nekouz District, 109, Borok, Russia 152742 ,grid.446199.70000 0000 8543 3323Cherepovets State University, Lunacharsky Ave., 5, Cherepovets, Russia 162600
| | - Yulia V. Mikhaylova
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Eduard M. Machs
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Peter M. Zhurbenko
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| | - Aleksandr V. Rodionov
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| |
Collapse
|
5
|
Gnutikov AA, Nosov NN, Loskutov IG, Blinova EV, Shneyer VS, Probatova NS, Rodionov AV. New Insights into the Genomic Structure of Avena L.: Comparison of the Divergence of A-Genome and One C-Genome Oat Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:1103. [PMID: 35567104 PMCID: PMC9102028 DOI: 10.3390/plants11091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We used next-generation sequencing analysis of the 3′-part of 18S rDNA, ITS1, and a 5′-part of the 5.8S rDNA region to understand genetic variation among seven diploid A-genome Avena species. We used 4−49 accessions per species that represented the As genome (A. atlantica, A. hirtula, and wiestii), Ac genome (A. canariensis), Ad genome (A. damascena), Al genome (A. longiglumis), and Ap genome (A. prostrata). We also took into our analysis one C-genome species, A. clauda, which previously was found to be related to A-genome species. The sequences of 169 accessions revealed 156 haplotypes of which seven haplotypes were shared by two to five species. We found 16 ribotypes that consisted of a unique sequence with a characteristic pattern of single nucleotide polymorphisms and deletions. The number of ribotypes per species varied from one in A. longiglumis to four in A. wiestii. Although most ribotypes were species-specific, we found two ribotypes shared by three species (one for A. damascena, A. hirtula, and A. wiestii, and the second for A. longiglumis, A. atlantica, and A. wiestii), and a third ribotype shared between A. atlantica and A. wiestii. A characteristic feature of the A. clauda ribotype, a diploid C-genome species, is that two different families of ribotypes have been found in this species. Some of these ribotypes are characteristic of Cc-genome species, whereas others are closely related to As-genome ribotypes. This means that A. clauda can be a hybrid between As- and C-genome oats.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Igor G. Loskutov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Elena V. Blinova
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Viktoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Nina S. Probatova
- Laboratory of Botany, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| |
Collapse
|
6
|
Loskutov IG, Gnutikov AA, Blinova EV, Rodionov AV. The Origin and Resource Potential of Wild and Cultivated Species of the Genus of Oats (Avena L.). RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|