1
|
Understanding the Sources of Ambient Fine Particulate Matter (PM2.5) in Jeddah, Saudi Arabia. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Urban air pollution is rapidly becoming a major environmental problem of public concern in several developing countries of the world. Jeddah, the second-largest city in Saudi Arabia, is subject to high air pollution that has severe implications for the health of the exposed population. Fine particulate matter (PM2.5) samples were collected for 24 h daily, during a 1-year campaign from 2013 to 2014. This study presents a detailed investigation of PM2.5 mass, chemical composition, and sources covering all four seasons of the year. Samples were analyzed for black carbon (BC), trace elements (TEs), and water-soluble ionic species (IS). The chemical compositions were statistically examined, and the temporal and seasonal patterns were characterized using descriptive analysis, correlation matrices, and elemental enrichment factor (EF). Source apportionment and source locations were performed on PM2.5 samples using the positive matrix factorization (PMF) model, elemental enrichment factor, and air-mass back trajectory analysis. The 24-h mean PM2.5 and BC concentrations ranged from 33.9 ± 9.1–58.8 ± 25 µg/m3 and 1.8 ± 0.4–2.4 ± 0.6 µg/m3, respectively. Atmospheric PM2.5 concentrations were well above the 24-h WHO guideline of 15 µg/m3, with overall results showing significant temporal and seasonal variability. EF defined two broad categories of TEs: anthropogenic (Ni, V, Cu, Zn, Cl, Pb, S, Lu, and Br), and earth-crust derived (Al, Si, Mg, K, Ca, Ti, Cr, Mn, Fe, and Sr). The five identified factors resulting from PMF were (1) fossil-fuels/oil combustion (45.3%), (2) vehicular emissions (19.1%), (3) soil/dust resuspension (15.6%), (4) industrial mixed dust (13.5%), and (5) sea-spray (6.5%). This study highlights the importance of focusing control strategies, not only on reducing PM concentration but also on the reduction of components of the PM as well, to effectively protect human health and the environment.
Collapse
|
2
|
Nayebare SR, Aburizaiza OS, Siddique A, Carpenter DO, Hussain MM, Zeb J, Aburiziza AJ, Khwaja HA. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1791-1801. [PMID: 30408866 DOI: 10.1016/j.envpol.2018.09.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 05/06/2023]
Abstract
Air pollution remains a major global public health and environmental issue. We assessed the levels of PM2.5 and delineated the major sources in Makkah, Saudi Arabia. Fine particulate matter (PM2.5) sampling was performed from February 26, 2014-January 27, 2015 in four cycles/seasons. Samples were analyzed for black carbon (BC) and trace elements (TEs). PM2.5 source apportionment was performed by computing enrichment factors (EFs) and positive matrix factorization (PMF). Backward-in time trajectories were used to assess the long-range transport. Significant seasonal variations in PM2.5 were observed, Spring: 113 ± 67.1, Summer: 88.3 ± 36.4, Fall: 67.8 ± 24, and Winter: 67.6 ± 36.9 μg m-3. The 24-h PM2.5 exceeded the WHO (25 μg m-3) and Saudi Arabia's (35 μg m-3) guidelines, with an air quality index (AQI) of "unhealthy to hazardous" to human health. Most delta-C computations were below zero, indicating minor contributions from bio-mass burning. TEs were primarily Si, Ca, Fe, Al, S, K and Mg, suggesting major contributions from soil (Si, Ca, Fe, Al, Mg), and industrial and vehicular emissions (S, Ca, Al, Fe, K). EF defined two broad categories of TEs as: anthropogenic (Cu, Zn, Eu, Cl, Pb, S, Br and Lu), and earth-crust derived (Al, Si, Na, Mg, Rb, K, Zr, Ti, Fe, Mn, Sr, Y, Cr, Ga, Ca, Ni and Ce). Notably, all the anthropogenic TEs can be linked to industrial and vehicular emissions. PMF analysis defined four major sources as: vehicular emissions, 30.1%; industrial-mixed dust, 28.9%; soil/earth-crust, 24.7%; and fossil-fuels/oil combustion, 16.3%. Plots of wind trajectories indicated wind direction and regional transport as major influences on air pollution levels in Makkah. In collusion, anthropogenic emissions contributed >75% of the observed air pollution in Makkah. Developing strategies for reducing anthropogenic emissions are paramount to controlling particulate air pollution in this region.
Collapse
Affiliation(s)
- Shedrack R Nayebare
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, 12201, USA; Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Omar S Aburizaiza
- Unit for Ain Zubaida Rehabilitation and Ground Water Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David O Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, 12201, USA; Institute for the Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY, 12144, USA
| | - Mirza M Hussain
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Jahan Zeb
- Unit for Ain Zubaida Rehabilitation and Ground Water Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Haider A Khwaja
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, 12201, USA; Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA.
| |
Collapse
|
3
|
Gustaytis MA, Myagkaya IN, Chumbaev AS. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia). CHEMOSPHERE 2018; 202:446-459. [PMID: 29579679 DOI: 10.1016/j.chemosphere.2018.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m2∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m2∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry.
Collapse
Affiliation(s)
- M A Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov Str., 3, Novosibirsk, 630090, Russia.
| | - I N Myagkaya
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, Novosibirsk, 630090, Russia
| | - A S Chumbaev
- Institute of Soil Science and Agrochemistry, Siberian Branch of Russian Academy of Sciences, Lavrent'eva Ave., 8/2, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Stepanova TV, Ondar UV, Korzhova EN, Tolmacheva VS, Smagunova AN. Choice of optimum conditions of emitter preparation for X-ray fluorescence analysis of aerosols. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Catinon M, Ayrault S, Boudouma O, Bordier L, Agnello G, Reynaud S, Tissut M. Isolation of technogenic magnetic particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 475:39-47. [PMID: 24419285 DOI: 10.1016/j.scitotenv.2013.12.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron+Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM-EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs.
Collapse
Affiliation(s)
- Mickaël Catinon
- Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble, France.
| | - Sophie Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette, France.
| | - Omar Boudouma
- Service du MEB, UFR928, Université Pierre et Marie Curie, 75252 Paris VI, France.
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette, France.
| | | | - Stéphane Reynaud
- Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble, France.
| | - Michel Tissut
- Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble, France.
| |
Collapse
|