1
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
2
|
Park JO, Choi Y, Ahn HM, Lee CK, Chun H, Park YM, Kim KB. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine. Anal Chim Acta 2024; 1285:342036. [PMID: 38057052 DOI: 10.1016/j.aca.2023.342036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Dopamine (DA), a vital neurotransmitter, plays a critical role in the human brain and relates to neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Numerous studies have explored detection of such biomarkers through surface-enhanced Raman spectroscopy (SERS). However, most of the studies focused on SERS detection face significant challenges with plasmonic nanostructure development. Such challenges often include time-consuming processes, complex fabrication, specialized chemical labeling, poor reproducibility, and random hotspot generation. Therefore, the need for simple and rapid nanostructure development is evident in SERS. RESULTS We propose an innovative SERS-active sensing technique for 50 nm silver nanoparticle (AgNP) clustering based on surface acoustic wave (SAW). When a 1 μL droplet of AgNP colloid is dispensed onto the SAW-propagation zone, the AgNP cluster is deposited after the droplet completely evaporates, developing plasmonic nanogaps for SERS hotspot caused by spherical AgNP aggregation. By optimizing the SAW system through the hydrophobic treatment and modulation of the operational power, the SAW-induced AgNP clustering showed densely packed AgNP within a dot-like configuration (∼2200 AgNP μm-2), effectively preventing particle welding. The characterization of 4-mercaptobenzoic acid as a probe analyte revealed that concentrations as low as 1.14 pM was detected using our SAW-SERS system under 785 nm laser excitation. Moreover, DA was detected up to 4.28 nM with a determination of 0.99 (R2). SIGNIFICANCE This technique for AgNP clustering induced by SAW provides a rapid, in situ, label-free SERS sensing method with outstanding sensitivity and linearity. A mere act of dropping can create extensive plasmonic hotspots featuring nanogap of ∼1.5 nm. The SAW-induced AgNP clustering can serve as an ultrasensitive SERS-active substrate for diverse molecular detections, including neurotransmitter detection.
Collapse
Affiliation(s)
- Jin Oh Park
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea; Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongheum Choi
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Hyeong Min Ahn
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea; Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang Ki Lee
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Min Park
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea.
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea.
| |
Collapse
|
3
|
Eremina OE, Yarenkov NR, Bikbaeva GI, Kapitanova OO, Samodelova MV, Shekhovtsova TN, Kolesnikov IE, Syuy AV, Arsenin AV, Volkov VS, Tselikov GI, Novikov SM, Manshina AA, Veselova IA. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2024; 266:124970. [PMID: 37536108 DOI: 10.1016/j.talanta.2023.124970] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is the production, aggregation, and deposition of amyloid-β (Aβ) peptide. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique capable of providing valuable information on chemical composition and molecule conformations in biological samples. However, one of the main challenges for introducing the SERS technique into the practice is preparation of scalable and at the same time stable nanostructured sensors with uniform spatial distribution of nanoparticles. Herein, we propose SERS platforms for reproducible, sensitive, label-free quantification of amyloid-β aggregates for short-wavelength - 532 and 633 nm - lasers. A SERS sensor - based on silver nanoparticles immobilized into a chitosan film (AgNP/CS) - provided a uniform distribution of AgNPs from a colloidal suspension across the SERS sensor, resulting in nanomolar limits of detection (LODs) for Aβ42 aggregates with a portable 532 nm laser. The laser-induced deposition was used to obtain denser periodic plasmonic sensors (AgNP/LID) with a uniform nanoparticle distribution. The AgNP/LID SERS sensor allowed for 15 pM LOD for Aβ42 aggregates with 633 nm laser. Notably, both nanostructured substrates allowed to distinguish amyloid aggregates from monomers. Therefore, our approach demonstrated applicability of SERS for detection of macromolecular volumetric objects as amyloid-β aggregates for fundamental biological studies as well as for "point-of-care" diagnostics and screening for early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander V Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Vladivostok, Russia
| | - Aleksey V Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - Gleb I Tselikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Cardoso MS, Rocha AR, Souza-Júnior JA, Menezes-Filho JA. Analytical method for urinary homovanillic acid and 5-hydroxyindoleacetic acid levels using HPLC with electrochemical detection applied to evaluate children environmentally exposed to manganese. Biomed Chromatogr 2023; 37:e5699. [PMID: 37427763 DOI: 10.1002/bmc.5699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) are the urinary metabolites of dopamine (DA) and serotonin (5-HA), respectively. We aimed to develop an extraction method for the determination of HVA and 5-HIAA, using strong anionic exchange cartridges combined with HPLC with electrochemical detection, and apply it to measure the levels of HVA and 5-HIAA in children living near a ferro-manganese alloy plant in Simões Filho, Brazil. The validated method showed good selectivity, sensitivity, precision, and accuracy. The limits of detection (LOD) were 4 and 8 μmol/L for 5-HIAA and HVA, respectively, in urine. Recoveries ranged from 85.8 to 94%. The coefficients of determination (R2 ) of the calibration curves were greater than 0.99. Spot urine samples of 30 exposed children and 20 nonexposed ones were processed accordingly. The metabolite levels in exposed and reference children were within the physiological ranges. The medians (range) for 5-HIAA and HVA of the exposed ones were 36.4 μmol/L (18.4-58.0) and 32.9 μmol/L (
Collapse
Affiliation(s)
- Mariana Silva Cardoso
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Andrea Rebouças Rocha
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | | | - José Antonio Menezes-Filho
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
5
|
Eremina OE, Kapitanova OO, Medved'ko AV, Zelenetskaya AS, Egorova BV, Shekhovtsova TN, Vatsadze SZ, Veselova IA. Plier Ligands for Trapping Neurotransmitters into Complexes for Sensitive Analysis by SERS Spectroscopy. BIOSENSORS 2023; 13:bios13010124. [PMID: 36671959 PMCID: PMC9856153 DOI: 10.3390/bios13010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Catecholamines-dopamine, noradrenaline and adrenaline are important biomarkers of neurotransmitter metabolism, indicating neuroendocrine tumors and neurodegenerative diseases. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique with unprecedented multiplexing capabilities. However, not all important analytes exhibit strong SERS signals on stable and robust nanostructured substrates. In this work, we propose a novel indicator system based on the formation of mixed ligand complexes with bispidine-based bis-azole ligands which can serve as pliers to trap Cu(II) ions and stabilize its complexes with catecholamines. Four synthesized ligands with different functional groups: carboxyl, amino, benzyl, and methoxybenzyl, were applied for forming stable complexes to shift maximum absorbance of catecholamines from the ultraviolet region to 570-600 nm. A new absorbance band in the visible range resonates with the local surface plasmon resonance (LSPR) band of metal nanoparticles and most used laser wavelengths. This match allowed use of Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) methodology to measure intense Raman signals on a nanostructured silver-based SERS-active substrate. The synthesized plier-like ligands fixed and stabilized catecholamine complexes with Cu(II) on the SERS sensor surface, which facilitated the determination of dopamine in a 3.2 × 10-12-1 × 10-8 M concentration range.
Collapse
Affiliation(s)
- Olga E. Eremina
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| | | | - Alexei V. Medved'ko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | | | - Sergey Z. Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina A. Veselova
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Eremina OE, Yarenkov NR, Kapitanova OO, Zelenetskaya AS, Smirnov EA, Shekhovtsova TN, Goodilin EA, Veselova IA. Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates for multiplex determination of dopamine, norepinephrine, and epinephrine. Mikrochim Acta 2022; 189:211. [PMID: 35505261 DOI: 10.1007/s00604-022-05247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
A unique approach based on Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates is proposed for sensitive and rapid determination of the catecholamines (CA) dopamine, norepinephrine, and epinephrine. The ternary (CA)2Cu(4AAP)2 complexes were characterized by the appearance of new absorbance bands at 555, 600, and 500 nm for dopamine, norepinephrine, and epinephrine, respectively. The new absorbance band matched with a broad surface plasmon resonance band of utilized silver nanoparticles: 450-600 nm, and 633 excitation wavelength. We observed enhancement factors up to 3.6·106 due to the additional resonant enhancement. The multiplexing capabilities of quantitative spectral unmixing for Raman spectra of a group of CAs, which differ by only either hydroxy or methyl group, at the fingerprint region were successfully demonstrated with the direct classic least squares model. The achieved nM limits of detection with only 1.5 mW laser power and analysis of spiked human blood plasma samples proved the possibility of the multiplex determination of the catecholamines at the level of reference concentrations in the blood of healthy people as well as promise for the future facilitation in the precision diagnosis of neuroendocrine tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Evgeny A Smirnov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Eugene A Goodilin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Němečková-Makrlíková A, Barek J, Navrátil T, Fischer J, Vyskočil V, Dejmková H. Simultaneous determination of tumour biomarkers homovanillic acid, vanillylmandelic acid, and 5-hydroxyindole-3-acetic acid in human urine using single run HPLC with a simple wall-jet glassy carbon electrochemical detector. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Shaidarova LG, Chelnokova IA, Leksina YA, Gedmina AV, Budnikov HC. A Dual Screen-Printed Electrode with Palladium Nanoparticles for the Flow-Injection Amperometric Determination of Dopamine and Adrenaline. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Eremina OE, Zatsepin TS, Farzan VM, Veselova IA, Zvereva MI. DNA detection by dye labeled oligonucleotides using surface enhanced Raman spectroscopy. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Němečková-Makrlíková A, Navrátil T, Barek J, Štenclová P, Kromka A, Vyskočil V. Determination of tumour biomarkers homovanillic and vanillylmandelic acid using flow injection analysis with amperometric detection at a boron doped diamond electrode. Anal Chim Acta 2019; 1087:44-50. [DOI: 10.1016/j.aca.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/10/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
|
12
|
Fluorescent ternary complexes of some biogenic amines and their metabolites with europium and oxytetracycline for applications in the chemical analysis. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Eremina OE, Semenova AA, Sergeeva EA, Brazhe NA, Maksimov GV, Shekhovtsova TN, Goodilin EA, Veselova IA. Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4804] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Makedonskaya MI, Veselova IA, Kalmykov SN, Shekhovtsova TN. Novel biosensing system for the simultaneous multiplex fluorescent determination of catecholamines and their metabolites in biological liquids. J Pharm Biomed Anal 2018; 156:133-141. [PMID: 29702391 DOI: 10.1016/j.jpba.2018.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
A novel original biosensing system for the simultaneous multiplex determination of general markers of catecholamine-producing diseases - catecholamines (dopamine, epinephrine, norepinephrine) and their metabolites (homovanillic and vanillylmandelic acids) in biological liquids without preliminary separation of analytes, in the absence of specific antibodies and receptors and with minimum pretreatment of a samples has been developed. This outstanding approach includes the unique combination of obtaining highly fluorescent derivatives of the analytes as a result of their interaction with two different amines ̶ benzylamine and 1,2-diphenylethylenediamine in the presence of peroxidase as a catalyst, with the application of first-order derivative fluorescence spectroscopy for the resolution of their spectra. Fluorescence is measured in 96-well microplates, which wells contain a bio-recognizing film consisted of horseradish peroxidase immobilized in the polymer chitosan. Spectra of the solutions are recorded in the range 400-500 nm (λex ∼ 305-356 nm). The proposed procedures provide sensitive (in the range of 3-200 nM), selective, and reproducible (RSDs ≤ 1%, n = 6) multiplex determination of the catecholamines and their metabolites in biological liquids were successfully applied for the rapid simultaneous (20 samples per 15-30 min) screening of human urine and mice blood plasma. The validated results showed good linearity, precision, accuracy and selectivity of this method.
Collapse
Affiliation(s)
- Maria I Makedonskaya
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, 119991, Russian Federation; National Research Centre "Kurchatov Institute", Moscow, 123182, Russian Federation.
| | - Irina A Veselova
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, 119991, Russian Federation; National Research Centre "Kurchatov Institute", Moscow, 123182, Russian Federation.
| | - Stepan N Kalmykov
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, 119991, Russian Federation; National Research Centre "Kurchatov Institute", Moscow, 123182, Russian Federation.
| | - Tatiana N Shekhovtsova
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
15
|
Vatsadze SZ, Eremina OE, Veselova IA, Kalmykov SN, Nenajdenko VG. 18F-Labelled catecholamine type radiopharmaceuticals in the diagnosis of neurodegenerative diseases and neuroendocrine tumours: approaches to synthesis and development prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|