1
|
David IG, Iorgulescu EE, Popa DE, Buleandra M, Cheregi MC, Noor H. Curcumin Electrochemistry-Antioxidant Activity Assessment, Voltammetric Behavior and Quantitative Determination, Applications as Electrode Modifier. Antioxidants (Basel) 2023; 12:1908. [PMID: 38001760 PMCID: PMC10669510 DOI: 10.3390/antiox12111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Curcumin (CU) is a polyphenolic compound extracted from turmeric, a well-known dietary spice. Since it has been shown that CU exerts beneficial effects on human health, interest has increased in its use but also in its analysis in different matrices. CU has an antioxidant character and is electroactive due to the presence of phenolic groups in its molecule. This paper reviews the data reported in the literature regarding the use of electrochemical techniques for the assessment of CU antioxidant activity and the investigation of the voltammetric behavior at different electrodes of free or loaded CU on various carriers. The performance characteristics and the analytical applications of the electrochemical methods developed for CU analysis are compared and critically discussed. Examples of voltammetric investigations of CU interaction with different metallic ions or of CU or CU complexes with DNA as well as the CU applications as electrode modifiers for the enhanced detection of various chemical species are also shown.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania;
- Medlife-Polisano Hospital, Strada Izvorului 1A, 550172 Sibiu, Romania
| |
Collapse
|
2
|
Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules 2023; 28:molecules28052308. [PMID: 36903553 PMCID: PMC10004803 DOI: 10.3390/molecules28052308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants are an important source of bioactive compounds with a wide spectrum of practically useful properties. Various types of antioxidants synthesized in plants are the reasons for their application in medicine, phytotherapy, and aromatherapy. Therefore, reliable, simple, cost-effective, eco-friendly, and rapid methods for the evaluation of antioxidant properties of medicinal plants and products on their basis are required. Electrochemical methods based on electron transfer reactions are promising tools to solve this problem. Total antioxidant parameters and individual antioxidant quantification can be achieved using suitable electrochemical techniques. The analytical capabilities of constant-current coulometry, potentiometry, various types of voltammetry, and chrono methods in the evaluation of total antioxidant parameters of medicinal plants and plant-derived products are presented. The advantages and limitations of methods in comparison to each other and traditional spectroscopic methods are discussed. The possibility to use electrochemical detection of the antioxidants via reactions with oxidants or radicals (N- and O-centered) in solution, with stable radicals immobilized on the electrode surface, via oxidation of antioxidants on a suitable electrode, allows the study of various mechanisms of antioxidant actions occurring in living systems. Attention is also paid to the individual or simultaneous electrochemical determination of antioxidants in medicinal plants using chemically modified electrodes.
Collapse
|
3
|
Ziyatdinova GK, Zhupanova AS, Budnikov HC. Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ziyatdinova G, Zhupanova A, Davletshin R. Simultaneous Determination of Ferulic Acid and Vanillin in Vanilla Extracts Using Voltammetric Sensor Based on Electropolymerized Bromocresol Purple. SENSORS 2021; 22:s22010288. [PMID: 35009830 PMCID: PMC8749893 DOI: 10.3390/s22010288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022]
Abstract
Natural phenolic antioxidants are one of the widely studied compounds in life sciences due to their important role in oxidative stress prevention and repair. The structural similarity of these antioxidants and their simultaneous presence in the plant samples stipulate the development of methods for their quantification. The current work deals with the simultaneous determination of vanillin and its bioprecursor ferulic acid using a voltammetric sensor for the first time. A sensor based on the layer-by-layer deposition of the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNTs) and electropolymerized bromocresol purple has been developed for this purpose. The best response of co-existing target analytes was registered for the polymer obtained from the 25 µM dye by 10-fold potential cycling from 0.0 to 1.2 V with the scan rate of 100 mV s−1 in 0.1 M phosphate buffer (PB), pH 7.0. Scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) confirmed the effectivity of the sensor developed. The linear dynamic ranges of 0.10–5.0 µM and 5.0–25 µM for both analytes with the detection limits of 72 nM and 64 nM for ferulic acid and vanillin, respectively, were achieved in differential pulse mode. The sensor was applied for the analysis of vanilla extracts.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya, 18, 420008 Kazan, Russia;
- Correspondence:
| | - Anastasiya Zhupanova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya, 18, 420008 Kazan, Russia;
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya, 18, 420008 Kazan, Russia;
| |
Collapse
|
5
|
Ziyatdinova GK, Budnikov HC. Micellar Extraction of Active Components from Spices and Evaluation of the Ce(IV)-Based Reducing Capacity of the Extracts. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ziyatdinova G, Budnikov H. MWNT-Based Electrode for the Voltammetric Quantification of Carvacrol. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01895-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Abstract
Rosmarinic acid (RA) is an important bioactive phenolic acid with significant biochemical activities, including the antioxidant one. It is widely found in plants of the families Lamiaceae and Boraginaceae and has many uses in the food, pharmaceutical and cosmetics industries. RA is an electroactive species owing to the presence of the two catechol groups in its structure. Due to their inherent characteristics, such as sensitivity, selectivity, ease of operation and not too high costs, electrochemical methods of analysis are interesting tools for the assessment of redox-active compounds. Moreover, there is a good correlation between the redox potential of the analyte and its capability to donate electrons and, consequently, its antioxidant activity. Therefore, this paper presents a detailed overview of the electrochemical (bio)sensors and methods, in both stationary and dynamic systems, applied for RA investigation under different aspects. These comprise its antioxidant activity, its interaction with biological important molecules and the quantification of RA or total polyphenolic content in different samples.
Collapse
|
8
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|