1
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
4
|
Searching for Promoters to Drive Stable and Long-Term Transgene Expression in Fibroblasts for Syngeneic Mouse Tumor Models. Int J Mol Sci 2020; 21:ijms21176098. [PMID: 32847094 PMCID: PMC7504129 DOI: 10.3390/ijms21176098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022] Open
Abstract
Tumor is a complex system of interactions between cancer cells and other cells of the tumor microenvironment. The cancer-associated fibroblasts (CAFs) of the tumor microenvironment remain in close contact with the cancer cells and play an important role in cancer progression. Genetically, CAFs are more stable than cancer cells, making them an attractive target for genetic modification in gene therapy. However, the efficiency of various promoters for transgene expression in fibroblasts is scarcely studied. We performed a comparative analysis of transgene long-term expression under the control of strong cytomegalovirus promoter (pCMV), constitutive cell promoter of the PCNA gene (pPCNA), and the potentially fibroblast-specific promoter of the IGFBP2 gene (pIGFBP2). In vitro expression of the transgene under the control of pCMV in fibroblasts was decreased soon after transduction, whereas the expression was more stable under the control of pIGFBP2 and pPCNA. The efficiency of transgene expression was higher under pPCNA than that under pIGFBP2. Additionally, in a mouse model, pPCNA provided more stable and increased transgene expression in fibroblasts as compared to that under pCMV. We conclude that PCNA promoter is the most efficient for long-term expression of transgenes in fibroblasts both in vitro and in vivo.
Collapse
|
5
|
Kuzmich A, Rakitina O, Didych D, Potapov V, Zinovyeva M, Alekseenko I, Sverdlov E. Novel Histone-Based DNA Carrier Targeting Cancer-Associated Fibroblasts. Polymers (Basel) 2020; 12:E1695. [PMID: 32751200 PMCID: PMC7464289 DOI: 10.3390/polym12081695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Nuclear proteins, like histone H2A, are promising non-viral carriers for gene delivery since they are biocompatible, biodegradable, bear intrinsic nuclear localization signal, and are easy to modify. The addition of surface-protein-binding ligand to histone H2A may increase its DNA delivery efficiency. Tumor microenvironment (TME) is a promising target for gene therapy since its surface protein repertoire is more stable than that of cancer cells. Cancer-associated fibroblasts (CAFs) are important components of TME, and one of their surface markers is beta-type platelet-derived growth factor receptor (PDGFRβ). In this study, we fused histone H2A with PDGFRβ-binding peptide, YG2, to create a novel non-viral fibroblast-targeting DNA carrier, H2A-YG2. The transfection efficiency of histone complexes with pDNA encoding a bicistronic reporter (enhanced green fluorescent protein, EGFP, and firefly luciferase) in PDGFRβ-positive and PDGFRβ-negative cells was estimated by luciferase assay and flow cytometry. The luciferase activity, percentage of transfected cells, and overall EGFP fluorescence were increased due to histone modification with YG2 only in PDGFRβ-positive cells. We also estimated the internalization efficiency of DNA-carrier complexes using tetramethyl-rhodamine-labeled pDNA. The ligand fusion increased DNA internalization only in the PDGFRβ-positive cells. In conclusion, we demonstrated that the H2A-YG2 carrier targeted gene delivery to PDGFRβ-positive tumor stromal cells.
Collapse
Affiliation(s)
- Alexey Kuzmich
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Dmitry Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Victor Potapov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Marina Zinovyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
| | - Irina Alekseenko
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; 16/10, Miklukho-Maklaya, 117997 Moscow, Russia; (O.R.); (D.D.); (V.P.); (M.Z.)
- FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| | - Eugene Sverdlov
- Institute of Molecular Genetics, Russian Academy of Sciences; 2, Kurchatov Square, 123182 Moscow, Russia; (I.A.); (E.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| |
Collapse
|
6
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
7
|
Souza-Moreira TM, Navarrete C, Chen X, Zanelli CF, Valentini SR, Furlan M, Nielsen J, Krivoruchko A. Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Res 2018; 18:4956763. [DOI: 10.1093/femsyr/foy036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Tatiana M Souza-Moreira
- Department of Organic Chemistry, São Paulo State University (UNESP), Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara 14800-060, Brazil
| | - Clara Navarrete
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg 41296, Sweden
| | - Xin Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg 41296, Sweden
| | - Cleslei F Zanelli
- Department of Biological Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jau km 1, Araraquara 14800-903, Brazil
| | - Sandro R Valentini
- Department of Biological Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jau km 1, Araraquara 14800-903, Brazil
| | - Maysa Furlan
- Department of Organic Chemistry, São Paulo State University (UNESP), Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara 14800-060, Brazil
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg 41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anastasia Krivoruchko
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg 41296, Sweden
- Biopetrolia AB, Kemivägen 10, Gothenburg 41296, Sweden
| |
Collapse
|
8
|
Ebadat S, Ahmadi S, Ahmadi M, Nematpour F, Barkhordari F, Mahdian R, Davami F, Mahboudi F. Evaluating the efficiency of CHEF and CMV promoter with IRES and Furin/2A linker sequences for monoclonal antibody expression in CHO cells. PLoS One 2017; 12:e0185967. [PMID: 29023479 PMCID: PMC5638317 DOI: 10.1371/journal.pone.0185967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
In recent years, monoclonal antibodies (mAbs) have been developed as powerful therapeutic and diagnostic agents and Chinese hamster ovary (CHO) cells have emerged as the dominant host for the recombinant expression of these proteins. A critical step in recombinant expression is the utilization of strong promoters, such as the Chinese Hamster Elongation Factor-1α (CHEF-1) promoter. To compare the strengths of CHEF with cytomegalovirus (CMV) promoter for mAb expression in CHO cells, four bicistronic vectors bearing either internal ribosome entry site (IRES) or Furin/2A (F2A) sequences were designed. The efficiency of these promoters was evaluated by measuring level of expressed antibody in stable cell pools. Our results indicated that CHEF promoter-based expression of mAbs was 2.5 fold higher than CMV-based expression in F2A-mediated vectors. However, this difference was less significant in IRES-mediated mAb expressing cells. Studying the stability of the F2A expression system in the course of 18 weeks, we observed that the cells having CHEF promoter maintained their antibody expression at higher level than those transfected with CMV promoter. Further analyses showed that both IRES-mediated vectors, expressed mAbs with correct size, whereas in antibodies expressed via F2A system heterogeneity of light chains were detected due to incomplete furin cleavage. Our findings indicated that the CHEF promoter is a viable alternative to CMV promoter-based expression in F2A-mediated vectors by providing both higher expression and level of stability.
Collapse
Affiliation(s)
- Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Medical Biotechnology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
9
|
Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, Juettner J, Chizhov I, Bamann C, Vavourakis C, Ghai R, Gushchin I, Borshchevskiy V, Rogachev A, Melnikov I, Popov A, Balandin T, Rodriguez-Valera F, Manstein DJ, Bueldt G, Bamberg E, Gordeliy V. Inward H + pump xenorhodopsin: Mechanism and alternative optogenetic approach. SCIENCE ADVANCES 2017; 3:e1603187. [PMID: 28948217 PMCID: PMC5609834 DOI: 10.1126/sciadv.1603187] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.
Collapse
Affiliation(s)
- Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Thomas Mager
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kirill Kovalev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes–Commissariat à l’Energie Atomique et aux Energies Alternatives–CNRS, Grenoble, France
| | - Alexey Alekseev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Josephine Juettner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Charlotte Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russia
| | - Igor Melnikov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Georg Bueldt
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes–Commissariat à l’Energie Atomique et aux Energies Alternatives–CNRS, Grenoble, France
| |
Collapse
|
10
|
Komissarov A, Demidyuk I, Safina D, Roschina M, Shubin A, Lunina N, Karaseva M, Kostrov S. Cytotoxic effect of co-expression of human hepatitis A virus 3C protease and bifunctional suicide protein FCU1 genes in a bicistronic vector. Mol Biol Rep 2017; 44:323-332. [PMID: 28748410 DOI: 10.1007/s11033-017-4113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Recent reports on various cancer models demonstrate a great potential of cytosine deaminase/5-fluorocytosine suicide system in cancer therapy. However, this approach has limited success and its application to patients has not reached the desirable clinical significance. Accordingly, the improvement of this suicide system is an actively developing trend in gene therapy. The purpose of this study was to explore the cytotoxic effect observed after co-expression of hepatitis A virus 3C protease (3C) and yeast cytosine deaminase/uracil phosphoribosyltransferase fusion protein (FCU1) in a bicistronic vector. A set of mono- and bicistronic plasmid constructs was generated to provide individual or combined expression of 3C and FCU1. The constructs were introduced into HEK293 and HeLa cells, and target protein synthesis as well as the effect of 5-fluorocytosine on cell death and the time course of the cytotoxic effect was studied. The obtained vectors provide for the synthesis of target proteins in human cells. The expression of the genes in a bicistronic construct provide for the cytotoxic effect comparable to that observed after the expression of genes in monocistronic constructs. At the same time, co-expression of FCU1 and 3C recapitulated their cytotoxic effects. The combined effect of the killer and suicide genes was studied for the first time on human cells in vitro. The integration of different gene therapy systems inducing cell death (FCU1 and 3C genes) in a bicistronic construct allowed us to demonstrate that it does not interfere with the cytotoxic effect of each of them. A combination of cytotoxic genes in multicistronic vectors can be used to develop pluripotent gene therapy agents.
Collapse
Affiliation(s)
- Alexey Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Ilya Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182.
| | - Dina Safina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Marina Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Andrey Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Nataliya Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Maria Karaseva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Sergey Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| |
Collapse
|
11
|
Schuck BW, MacArthur R, Inglese J. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 79:5.32.1-5.32.27. [PMID: 28398644 PMCID: PMC5510169 DOI: 10.1002/cpns.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reporter-biased artifacts-i.e., compounds that interact directly with the reporter enzyme used in a high-throughput screening (HTS) assay and not the biological process or pharmacology being interrogated-are now widely recognized to reduce the efficiency and quality of HTS used for chemical probe and therapeutic development. Furthermore, narrow or single-concentration HTS perpetuates false negatives during primary screening campaigns. Titration-based HTS, or quantitative HTS (qHTS), and coincidence reporter technology can be employed to reduce false negatives and false positives, respectively, thereby increasing the quality and efficiency of primary screening efforts, where the number of compounds investigated can range from tens of thousands to millions. The three protocols described here allow for generation of a coincidence reporter (CR) biocircuit to interrogate a biological or pharmacological question of interest, generation of a stable cell line expressing the CR biocircuit, and qHTS using the CR biocircuit to efficiently identify high-quality biologically active small molecules. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brittany W Schuck
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Matsuzaki Y, Oue M, Hirai H. Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. J Neurosci Methods 2013; 223:133-43. [PMID: 24361760 DOI: 10.1016/j.jneumeth.2013.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. RESULTS We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. CONCLUSION rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals.
Collapse
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Miho Oue
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|