1
|
Masoud HMM, Helmy MS, Darwish DA, Ibrahim MA. Purification, characterization, and enzyme kinetics of a glutathione S transferase from larvae of the camel tick Hyalomma dromedarii. J Genet Eng Biotechnol 2023; 21:28. [PMID: 36884105 PMCID: PMC9995618 DOI: 10.1186/s43141-023-00486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Glutathione s-transferases (GSTs) perform an essential role in detoxification of xenobiotics and endogenous compounds via their conjugation to reduce glutathione. RESULTS A GST enzyme, designated tick larvae glutathione S transferase (TLGST), was purified from larvae of the camel tick Hyalomma dromedarii via ammonium sulfate precipitation, glutathione-Sepharose affinity column and Sephacryl S-300 chromatography. TLGST-specific activity was found to be 1.56 Umg-1 which represents 39 folds and 32.2% recovery. The molecular weight of TLGST purified from camel tick larvae was found as 42 kDa by gel filtration. TLGST has a pI value of 6.9 and was found a heterodimeric protein of 28 and 14 kDa subunits as detected on SDS-PAGE. The Lineweaver-Burk plot calculated the km for CDNB to be 0.43 mM with Vmax value of 9.2 Umg-1. TLGST exhibited its optimal activity at pH 7.9. Co2+, Ni2+ and Mn2+ increased the activity of TLGST while Ca2+, Cu2+, Fe2+ and Zn2+ inhibited it. TLGST was inhibited by cumene hydroperoxide, p-hydroxymercuribenzoate, lithocholic acid, hematin, triphenyltin chloride, p-chloromercuribenzoic acid (pCMB), N-p-Tosyl-L-phenylalanine chloromethyl ketone (TPCK), iodoacetamide, EDTA and quercetin. pCMB inhibited TLGST competitively with Ki value of 0.3 mM. CONCLUSIONS These findings will help to understand the various physiologic conditions of ticks and targeting TLGST could be significant tool for development of prospective vaccines against ticks as a bio-control strategy to overcome the rapid grows in pesticide-resistant tick populations.
Collapse
Affiliation(s)
- Hassan M. M. Masoud
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mohamed S. Helmy
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Doaa A. Darwish
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mahmoud A. Ibrahim
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Mohamed MA, Ghazy AEM, Abdel Karim GS, El-khonezy MI, Abd-Elaziz AM, Ghanem MM. Defense status in larval stage of red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Masoud HMM, Helmy MS, Darwish DA, Abdel-Monsef MM, Ibrahim MA. Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:349-361. [PMID: 31927645 DOI: 10.1007/s10493-020-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.
Collapse
Affiliation(s)
- Hassan M M Masoud
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed S Helmy
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Doaa A Darwish
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed M Abdel-Monsef
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
4
|
Al-Madboly LA, Ali SM, Fakharany EME, Ragab AE, Khedr EG, Elokely KM. Stress-Based Production, and Characterization of Glutathione Peroxidase and Glutathione S-Transferase Enzymes From Lactobacillus plantarum. Front Bioeng Biotechnol 2020; 8:78. [PMID: 32181246 PMCID: PMC7057912 DOI: 10.3389/fbioe.2020.00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/29/2020] [Indexed: 01/08/2023] Open
Abstract
More attention has been recently directed toward glutathione peroxidase and s-transferase enzymes because of the great importance they hold with respect to their applications in the pharmaceutical field. This work was conducted to optimize the production and characterize glutathione peroxidase and glutathione s-transferase produced by Lactobacillus plantarum KU720558 using Plackett-Burman and Box-Behnken statistical designs. To assess the impact of the culture conditions on the microbial production of the enzymes, colorimetric methods were used. Following data analysis, the optimum conditions that enhanced the s-transferase yield were the De Man-Rogosa-Sharp (MRS) broth as a basal medium supplemented with 0.1% urea, 0.075% H2O2, 0.5% 1-butanol, 0.0125% amino acids, and 0.05% SDS at pH 6.0 and anaerobically incubated for 24 h at 40°C. The optimum s-transferase specific activity was 1789.5 U/mg of protein, which was ~12 times the activity of the basal medium. For peroxidase, the best medium composition was 0.17% urea, 0.025% bile salt, 7.5% Na Cl, 0.05% H2O2, 0.05% SDS, and 2% ethanol added to the MRS broth at pH 6.0 and anaerobically incubated for 24 h at 40°C. Furthermore, the optimum peroxidase specific activity was 612.5 U/mg of protein, indicating that its activity was 22 times higher than the activity recorded in the basal medium. After SDS-PAGE analysis, GST and GPx showed a single protein band of 25 and 18 kDa, respectively. They were able to retain their activities at an optimal temperature of 40°C for an hour and pH range 4–7. The 3D model of both enzymes was constructed showing helical structures, sheet and loops. Protein cavities were also detected to define druggable sites. GST model had two large pockets; 185Å3 and 71 Å3 with druggability score 0.5–0.8. For GPx, the pockets were relatively smaller, 71 Å3 and 32 Å3 with druggability score (0.65–0.66). Therefore, the present study showed that the consortium components as well as the stress-based conditions used could express both enzymes with enhanced productivity, recommending their application based on the obtained results.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Esmail M El Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City for Scientific Research and Technology Applications, New Borg EL Arab, Egypt
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Khaled M Elokely
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, PA, United States.,Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
| |
Collapse
|
5
|
Chafik A, Essamadi A, Çelik SY, Solak K, Mavi A. Partial Purification and Some Interesting Properties of Glutathione Peroxidase from Liver of Camel (Camelus dromedarius). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018; 44:41-51. [DOI: 10.1134/s1068162018010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/28/2017] [Indexed: 01/04/2025]
|
6
|
Wang Y, Han H, Cui B, Hou Y, Wang Y, Wang Q. A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme. Bioengineered 2017; 8:742-749. [PMID: 28873004 DOI: 10.1080/21655979.2017.1373534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A glutathione peroxidase (GPx) gene, designated as PsGPx, was cloned from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506 and expressed in Escherichia coli. The full-length PsGPx contained a 585-bp encoding 194 amino acids with predicted molecular masses of approx. 21.7 kDa. Multiple sequence alignments revealed that PsGPx belonged to the thioredoxin-like superfamily. PsGPx was heterologously overexpressed in E. coli, purified and characterized. The maximum catalytic temperature and pH value for recombinant PsGPx (rPsGPx) were 30°C and pH 9.0, respectively. rPsGPx retained 45% of the maximum activity at 0°C and exhibited high thermolability with a half-life of approx. 40 min at 40°C. In addition, the enzymatic activity of rPsGPx was still manifested under 3 M NaCl. The Km and Vmax values of the recombinant enzyme using GSH and H2O2 as substrates were 1.73 mM and 16.28 nmol/mL/min versus 2.46 mM and 21.50 nmol/mL/min, respectively.
Collapse
Affiliation(s)
- Yatong Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Han Han
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Bingqing Cui
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yanhua Hou
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yifan Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Quanfu Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| |
Collapse
|