1
|
Bouvarel T, Camperi J, Guillarme D. Multi-dimensional technology - Recent advances and applications for biotherapeutic characterization. J Sep Sci 2024; 47:e2300928. [PMID: 38471977 DOI: 10.1002/jssc.202300928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
This review provides an overview of the latest advancements and applications in multi-dimensional liquid chromatography coupled with mass spectrometry (mD-LC-MS), covering aspects such as inter-laboratory studies, digestion strategy, trapping column, and multi-level analysis. The shift from an offline to an online workflow reduces sample processing artifacts, analytical variability, analysis time, and the labor required for data acquisition. Over the past few years, this technique has demonstrated sufficient maturity for application across a diverse range of complex products. Moreover, there is potential for this strategy to evolve into an integrated process analytical technology tool for the real-time monitoring of monoclonal antibody quality. This review also identifies emerging trends, including its application to new modalities, the possibility of evaluating biological activity within the mD-LC set-up, and the consideration of multi-dimensional capillary electrophoresis as an alternative to mD-LC. As mD-LC-MS continues to evolve and integrate emerging trends, it holds the potential to shape the next generation of analytical tools, offering exciting possibilities for enhanced characterization and monitoring of complex biopharmaceutical products.
Collapse
Affiliation(s)
- Thomas Bouvarel
- Protein Analytical Chemistry, Genentech, South San Francisco, California, USA
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, California, USA
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
3
|
Alavizadeh SH, Doagooyan M, Zahedipour F, Torghabe SY, Baharieh B, Soleymani F, Gheybi F. Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19. IET Nanobiotechnol 2022; 16:67-77. [PMID: 35274474 PMCID: PMC9007150 DOI: 10.1049/nbt2.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.
Collapse
Affiliation(s)
- Seyedeh Hoda Alavizadeh
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical NanotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Maham Doagooyan
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Molecular MedicineBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shima Yahoo Torghabe
- Department of Basic SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Bahare Baharieh
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Firooze Soleymani
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Fatemeh Gheybi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Kopylov AM, Fab LV, Antipova O, Savchenko EA, Revishchin AV, Parshina VV, Pavlova SV, Kireev II, Golovin AV, Usachev DY, Pavlova GV. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. BIOCHEMISTRY (MOSCOW) 2021; 86:1012-1024. [PMID: 34488577 DOI: 10.1134/s0006297921080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.
Collapse
Affiliation(s)
- Alexey M Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Lika V Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Olga Antipova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Savchenko
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Alexander V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Viktoriya V Parshina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Svetlana V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Igor I Kireev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Golovin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitry Y Usachev
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Galina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.,Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|