Çol S, Başçeken S, Baran A. Synthesis of biscarbazole derivative, detection of the "on-off" sensor property of Cu
2+ by fluorimetry, and anti-cancer evaluation.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;
320:124624. [PMID:
38878725 DOI:
10.1016/j.saa.2024.124624]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Biscarbazole derivative probe (6) (Z)-2-(3-(((9-heptyl-9H-carbazol-3-yl)methylene)amino)-9H-carbazol-9-yl)ethan-1-ol containing an imine group, which is a sensitive and selective fluorescence chemosensor, was designed and synthesized for the effective evaluation of Cu2+ metal ion levels. The synthesized compounds were characterized using 1H NMR, 13C NMR, FT-IR, and MALDI-TOF MS (for compound 6) spectroscopic data. The interaction model between probe 6 and Cu2+ was determined by combining fluorescence methods, 1H NMR titration, Job's plot, and theoretical calculations. For probe 6, the fluorogenic recognition of Cu2+ was investigated by fluorescence spectroscopy, and the optical changes caused by Cu2+ ions were carried out in ACN/H2O (50:50) solution at pH 7.0. Fluorescence probe 6 was found to "turn-off" its fluorescence in the presence of paramagnetic Cu2+ ions. Probe 6 was determined to have a rapid response within 40s and showed a fluorescence response to Cu2+ with a low detection limit of 0.16 μM. Additionally, in vitro anticancer activity and cell imaging studies of probe 6 against the prostate cell line (PC-3) were performed.
Collapse