1
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
2
|
Wang JW, Li RF, Yang XT, Lan GH, Qiu HY, Xu B. Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue. Carbohydr Res 2021; 501:108276. [PMID: 33662813 DOI: 10.1016/j.carres.2021.108276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
With the development of dye and printing, production wastewater has become one of the most primary pollution sources of water and soil pollution. Most of the dyes are toxic substances, which have the "three-way" effect of carcinogenic, teratogenic and mutagenic. Therefore, it is a very difficult but significant issue to deal with the dye in the wastewater. Here, we report a study on low-cost, high-capacity hydrogels that remove water-soluble dyes. The hydrogel is prepared by crosslinking the β-cyclodextrin and functional monomer: acrylamido and 2-acrylamide-2-methylpropane sulfonic acid by aqueous solution polymerization, meanwhile, alkaline hydrolysis is also an important step for adsorption performance. After alkaline hydrolysis, the amide and sulfonic groups in the hydrogel were converted into carboxylate and sulfonate, which was beneficial to the adsorption of cationic dyes. This polymer could remove 96.58% methylene blue (400 mg/L) and only requires 0.02 wt%. Its maximum adsorption capacity for methylene blue could reach 2638.22 mg/g under equilibrium condition. It is the most powerful adsorbent used to treat dye wastewater, according to the report. It also provides some references for hydrogel treatment of dye wastewater.
Collapse
Affiliation(s)
- Jian-Wei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Rui-Feng Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xiao-Ting Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Gui-Hong Lan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Hai-Yan Qiu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Bo Xu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
3
|
Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: Application for extraction of pesticides. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E188. [PMID: 31906527 PMCID: PMC6981598 DOI: 10.3390/ma13010188] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
This review is an extensive evaluation and essential analysis of the design and formation of hydrogels (HGs) for drug delivery. We review the fundamental principles of HGs (their chemical structures, physicochemical properties, synthesis routes, different types, etc.) that influence their biological properties and medical and pharmaceutical applications. Strategies for fabricating HGs with different diameters (macro, micro, and nano) are also presented. The size of biocompatible HG materials determines their potential uses in medicine as drug carriers. Additionally, novel drug delivery methods for enhancing treatment are discussed. A critical review is performed based on the latest literature reports.
Collapse
Affiliation(s)
| | | | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (A.C.); (M.T.)
| |
Collapse
|
6
|
Saeed RMY, Bano Z, Sun J, Wang F, Ullah N, Wang Q. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye. J Appl Polym Sci 2018. [DOI: 10.1002/app.47404] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Zahira Bano
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment; Jiangsu University; Zhenjiang 212013 China
| | - Fengyun Wang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Nabi Ullah
- School of Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment; Jiangsu University; Zhenjiang 212013 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material; Jiangsu Province, Nanjing 210042 China
| |
Collapse
|
7
|
Chan SY, Goh SS, Dou Q, Chan BQY, Choo WS, Young DJ, Loh XJ. Unprecedented Acid-Promoted Polymerization and Gelation of Acrylamide: A Serendipitous Discovery. Chem Asian J 2018; 13:1797-1804. [PMID: 29924504 DOI: 10.1002/asia.201800552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/04/2018] [Indexed: 12/30/2022]
Abstract
Dilute acid polymerizes degassed, aqueous acrylamide with concomitant gelation, without the need for added free radical initiator or cross-linking agent. This reaction is accelerated by sonication or UV irradiation, but inhibited by adventitious oxygen or the addition of a free radical inhibitor, suggesting an acid-accelerated free radical process. The resulting hydrogels are thixotropic in nature and partially disrupted by the addition of chaotropic agents, indicating the importance of hydrogen bonding to the 3D network. This discovery was made while trying to prepare pectin-polyacrylamide hydrogels. We observed that pectin initiated the gelation of acrylamide, but only if the aqueous pectin samples had a pH lower than ca. 5.
Collapse
Affiliation(s)
- Siew Yin Chan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
| | - Shermin S Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
| | - Qingqing Dou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - David James Young
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- Singapore Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
8
|
Zhang Y, Yu M, Zhang Z, Guo J, Wang C. Magnetic Nano-Sponges for High-Capacity Protein Enrichment and Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4815-4820. [PMID: 27436383 DOI: 10.1002/smll.201601648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/18/2016] [Indexed: 06/06/2023]
Abstract
On the basis of the gel effect of the living RAFT (Reversible Addition-Fragmentation Chain Transfer) polymerization, magnetic nano-sponges with ultrasoft PAA net-like shells are prepared and then used for enriching the entire proteins from real biological samples with ultrahigh capacity. In addition, the immobilized enzyme Cyt c or HRP surprisingly show much higher catalytic activity than free enzymes.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Meng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|