1
|
Bobrovskikh MA, Gruntenko NE. Mechanisms of Neuroendocrine Stress Response in Drosophila and Its Effect on Carbohydrate and Lipid Metabolism. INSECTS 2023; 14:474. [PMID: 37233102 PMCID: PMC10231120 DOI: 10.3390/insects14050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Response to short-term stress is a fundamental survival mechanism ensuring protection and adaptation in adverse environments. Key components of the neuroendocrine stress reaction in insects are stress-related hormones, including biogenic amines (dopamine and octopamine), juvenile hormone, 20-hydroxyecdysone, adipokinetic hormone and insulin-like peptides. In this review we focus on different aspects of the mechanism of the neuroendocrine stress reaction in insects on the D. melanogaster model, discuss the interaction of components of the insulin/insulin-like growth factors signaling pathway and other stress-related hormones, and suggest a detailed scheme of their possible interaction and effect on carbohydrate and lipid metabolism under short-term heat stress. The effect of short-term heat stress on metabolic behavior and possible regulation of its mechanisms are also discussed here.
Collapse
|
2
|
Han DX, Wang CJ, Sun XL, Liu JB, Jiang H, Gao Y, Chen CZ, Yuan B, Zhang JB. Identification of circular RNAs in the immature and mature rat anterior pituitary. J Endocrinol 2019; 240:393-402. [PMID: 30657740 DOI: 10.1530/joe-18-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are a new class of RNA that have a stable structure characterized by covalently closed circular molecules and are involved in invasive pituitary adenomas and recurrent clinically nonfunctioning pituitary adenomas. However, information on circRNAs in the normal pituitary, especially in rats, is limited. In this study, we identified 4123 circRNAs in the immature (D15) and mature (D120) rat anterior pituitary using the Illumina platform, and 32 differentially expressed circRNAs were found. A total of 150 Gene Ontology terms were significantly enriched, and 16 KEGG pathways were found to contain differentially expressed genes. Moreover, we randomly selected eight highly expressed circRNAs and detected their relative expression levels in the mature and immature rat pituitary by qPCR. In addition, we predicted 90 interactions between 53 circRNAs and 57 miRNAs using miRanda. Notably, circ_0000964 and circ_0001303 are potential miRNA sponges that may regulate the Fshb gene. The expression profile of circRNAs in the immature and mature rat anterior pituitary may provide more information about the roles of circRNAs in the development and reproduction in mammals.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jian-Bo Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
3
|
Gruntenko NE, Rauschenbach IY. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review. Gen Comp Endocrinol 2018; 258:134-139. [PMID: 28554733 DOI: 10.1016/j.ygcen.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
The endocrine stress response in Drosophila includes catecholamines, juvenile hormone (JH), 20-hydroxyecdysone (20E) and the insulin/insulin-like growth factor signalling pathway (IIS). Several changes in the IIS and hormonal status that occur under unfavourable conditions are universal and do not depend on the nature of stress exposure. The reviewed studies on the impact of different element of the Drosophila IIS, such as insulin-like receptor, the homologue of its substrate, CHICO, the transcription factor dFOXO and insulin like peptide 6, on the hormonal status suggest that the IIS controls catecholamine metabolism indirectly via JH, and there is a feedback loop in the interaction of JH and IIS. Moreover, at least one of the ways in which the IIS is involved in the control of stress resistance is mediated through JH/dopamine signalling.
Collapse
Affiliation(s)
- N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| | - I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Rauschenbach IY, Karpova EK, Burdina EV, Adonyeva NV, Bykov RA, Ilinsky YY, Menshanov PN, Gruntenko NE. Insulin-like peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen Comp Endocrinol 2017; 243:1-9. [PMID: 27823956 DOI: 10.1016/j.ygcen.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Insulin-like peptide DILP6 is a component of the insulin/insulin-like growth factor signalling pathway of Drosophila. Juvenile hormone (JH) and dopamine (DA) are involved in the stress response and in the control of reproduction. In this study, we investigate whether DILP6 regulates the JH and DA levels by studying the effect of a strong hypomorphic mutation dilp641 on JH and DA metabolism in D. melanogaster females. We show that DILP6 regulates JH and DA metabolism: the mutation dilp641 results in a reduction in JH-hydrolysing activity and an increase in the activities of DA synthesis enzymes (alkaline phosphatase (ALP) and tyrosine hydroxylase (TH)). In the mutant females, we also found increased fecundity in addition to the intensity of the response (stress reactivity) of ALP and TH to heat stress. As we showed previously, this suggests an increased level of JH synthesis. We confirm this suggestion by treating the mutant females with the JH inhibitor, precocene, which restors the activity and stress reactivity of ALP and TH as well as fecundity to levels similar to those in the control flies. The data suggest a feedback system in the interaction between JH and DILP6 in which DILP6 negatively regulates the JH titre via an increase in the hormone degradation and a decrease in its synthesis.
Collapse
Affiliation(s)
- I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - E K Karpova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - E V Burdina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - N V Adonyeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - R A Bykov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Y Y Ilinsky
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - P N Menshanov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Andreenkova OV, Rauschenbach IY, Gruntenko NE. Hypomorphic mutation of the dilp6 gene increases DILP3 expression in insulin-producing cells of Drosophila melanogaster. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795417080026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rauschenbach IY, Karpova EK, Gruntenko NE. dFOXO transcription factor regulates juvenile hormone metabolism in Drosophila melanogaster females. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Rauschenbach IY, Karpova EK, Alekseev AA, Adonyeva NV, Shumnaya LV, Gruntenko NE. Interplay of insulin and dopamine signaling pathways in the control of Drosophila melanogaster fitness. DOKL BIOCHEM BIOPHYS 2015; 461:135-8. [PMID: 25937233 DOI: 10.1134/s1607672915020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/21/2022]
Affiliation(s)
- I Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk, 630090, Russia,
| | | | | | | | | | | |
Collapse
|