1
|
Bian S, Shao D, Zhao Q, Li Q, Ren Y. Transcriptome-Based Screening of Candidate Low-Temperature-Associated Genes and Analysis of the BocARR-B Transcription Factor Gene Family in Kohlrabi ( Brassica oleracea L. var. caulorapa L.). Int J Mol Sci 2024; 25:9261. [PMID: 39273211 PMCID: PMC11394831 DOI: 10.3390/ijms25179261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.
Collapse
Affiliation(s)
- Shuanling Bian
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Qingsheng Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Quanhui Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
2
|
Jiao Y, He D, Zhang S, Cheng M, Chen S, Dong T, Wang L, Huang X. Lanthanum interferes with the fundamental rhythms of stomatal opening, expression of related genes, and evapotranspiration in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116576. [PMID: 38878562 DOI: 10.1016/j.ecoenv.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 μM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 μM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.
Collapse
Affiliation(s)
- Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Ding He
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Shuya Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengzhu Cheng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Si Chen
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Tinglan Dong
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
3
|
Fu C, Xiao Y, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 2024; 25:702. [PMID: 39026173 PMCID: PMC11264790 DOI: 10.1186/s12864-024-10622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - YuJie Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| |
Collapse
|
4
|
Bychkov IA, Andreeva AA, Kudryakova NV, Pojidaeva ES, Kusnetsov VV. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111359. [PMID: 35738478 DOI: 10.1016/j.plantsci.2022.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts' mechanisms of adaptation to elevated temperatures are largely determined by the gene expression of the plastid transcription apparatus. Gene disruption of iron-containing superoxide dismutase PAP4/FSD3 and PAP9/FSD2, which are parts of the DNA-RNA polymerase complex of plastids, contributed to a decrease in resistance to oxidative stress caused by the prolonged action of elevated temperatures (5 days, 30 °C). Under heat stress conditions, pap4/fsd3 and pap9/fsd2 mutants showed a decline in chlorophyll content and photosynthesis level, as measured by photosynthetic parameters, and a different amplitude of HSP gene response to heat stress. The expression of nuclear- and plastid-encoded photosynthesis genes and corresponding proteins was strongly inhibited in the mutants as compared with wild-type plants and was further suppressed or displayed no additional changes at 30 °C. NEP-dependent plastid genes, as well as NEP genes RPOTp and RPOTmp, were also downregulated in the mutants by high temperature or remained stable, unlike in wild-type seedlings where these genes were strongly upregulated. The results obtained correspond to the concept of the complex effect of various forms of reactive oxygen species under all types of stresses, including heat stress, and confirm the hypothesis of a new regulatory function in plastid transcription acquired by enzymatic proteins during evolution.
Collapse
Affiliation(s)
- Ivan A Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Aleksandra A Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Natalia V Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Elena S Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Victor V Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|