1
|
Cebadero-Dominguez Ó, Díez-Quijada L, Puerto M, Prieto A, Cameán AM, Jos Á. In vitro evaluation of the toxicity mechanisms of two functionalized reduced graphene oxide derivatives. Chem Biol Interact 2024; 406:111359. [PMID: 39706313 DOI: 10.1016/j.cbi.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Dodecyl amine functionalized reduced graphene oxide (DA-rGO) and [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized rGO (MTAC-rGO) have been developed and characterised for their further use in the food packaging industry as food contact materials. But before their application, an authorization procedure is required in which their safety plays a key role. Therefore, the aim of this work was to evaluate their toxicity with focus on two different toxicity mechanisms: genotoxicity and immunotoxicity. Following the recommendations of the European Food Safety Authority, the mutagenicity and genotoxicity were evaluated by the mouse lymphoma assay and the micronucleus assay, respectively, in L5178Y TK cells. Both assays did not show any effect at the tested concentrations (up to 200 μg/mL). The potential immunotoxicity was evaluated on two human cell lines: THP-1 (monocytes) and Jurkat (lymphocytes). The results showed that the highest cytotoxicity was induced by MTAC-rGO in Jurkat cells. The two functionalized rGO compounds did not significantly affect the differentiation process of monocytes into macrophages. In general, both compounds altered the expression of different cytokines, with the most prominent changes observed with MTAC-rGO in THP-1 cells. Moreover, MTAC-rGO induced the most evident differences in markers of cell death mechanisms. Also, for this graphene derivative, increased levels of IL-1β and TNF-α in THP-1 cell supernatants were observed by ELISA. In conclusion, a case-by-case evaluation is necessary as both functionalized rGO compounds exhibit distinct toxicity profiles that warrant further investigation before their application in the food industry.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Alejandro Prieto
- Packaging, Transport and Logistic Research Institute, Albert Einstein, 1, Paterna, 46980, Valencia, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| |
Collapse
|
2
|
Timganova VP, Vlasova VV, Bochkova MS, Shardina KY, Uzhviyuk SV, Khramtsov PV, Rayev MB, Zamorina SA. Effect of PEGylated Graphene Oxide Nanoparticles on the Metabolism of Jurkat Cells. DOKL BIOCHEM BIOPHYS 2023; 512:288-291. [PMID: 38093133 DOI: 10.1134/s1607672923700473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 12/18/2023]
Abstract
The effect of graphene oxide (GO) nanoparticles of 100-200 nm in size coated with linear (LP-GO) and branched (BP-GO) polyethylene glycol at concentrations of 5 and 25 μg/mL on the metabolism of Jurkat tumor cells was studied. It was found that LP-GO nanoparticles at a concentration of 25 μg/mL can enhance basal glycolysis of Jurkat T-lymphocyte tumor cell line cells, while LP-GO and BP-GO at the same concentration can reduce the indicators of compensatory glycolysis. Despite this, GO nanoparticles coated with linear and branched PEG at a concentration of 5 μg/mL do not have pronounced effects on oxidative phosphorylation and glycolysis of Jurkat cells and could therefore be safe for activated T cells.
Collapse
Affiliation(s)
- V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia.
| | - V V Vlasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| | - K Yu Shardina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| | - M B Rayev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| |
Collapse
|
3
|
Uzhviyuk SV, Khramtsov PV, Raev MB, Timganova VP, Bochkova MS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Zamorina SA. Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System. Bull Exp Biol Med 2023:10.1007/s10517-023-05830-1. [PMID: 37338769 DOI: 10.1007/s10517-023-05830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 06/21/2023]
Abstract
The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles, peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral blood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.
Collapse
Affiliation(s)
- S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M B Raev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - O G Khaziakhmatova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | | | - L S Litvinova
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
4
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|