1
|
Daruich A, Jaworski T, Henry H, Zola M, Youale J, Parenti L, Naud MC, Delaunay K, Bertrand M, Berdugo M, Kowalczuk L, Boatright J, Picard E, Behar-Cohen F. Oral Ursodeoxycholic Acid Crosses the Blood Retinal Barrier in Patients with Retinal Detachment and Protects Against Retinal Degeneration in an Ex Vivo Model. Neurotherapeutics 2021; 18:1325-1338. [PMID: 33537951 PMCID: PMC8423962 DOI: 10.1007/s13311-021-01009-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Rhegmatogenous retinal detachment (RD) is a threatening visual condition and a human disease model for retinal degenerations. Despite successful reattachment surgery, vision does not fully recover, due to subretinal fluid accumulation and subsequent photoreceptor cell death, through mechanisms that recapitulate those of retinal degenerative diseases. Hydrophilic bile acids are neuroprotective in animal models, but whether they can be used orally for retinal diseases is unknown. Ursodeoxycholic acid (UDCA) being approved for clinical use (e.g., in cholestasis), we have evaluated the ocular bioavailability of oral UDCA, administered to patients before RD surgery. The level of UDCA in ocular media correlated with the extent of blood retinal barrier disruption, evaluated by the extent of detachment and the albumin concentration in subretinal fluid. UDCA, at levels measured in ocular media, protected photoreceptors from apoptosis and necrosis in rat retinal explants, an ex vivo model of RD. The subretinal fluid from UDCA-treated patients, collected during surgery, significantly protected rat retinal explants from cell death, when compared to subretinal fluid from control patients. Pan-transcriptomic analysis of the retina showed that UDCA upregulated anti-apoptotic, anti-oxidant, and anti-inflammatory genes. Oral UDCA is a potential neuroprotective adjuvant therapy in RD and other retinal degenerative diseases and should be further evaluated in a clinical trial.
Collapse
Affiliation(s)
- Alejandra Daruich
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Ophthalmology Department, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Thara Jaworski
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Hugues Henry
- Innovation and Development Laboratory, Clinical Chemistry Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta Zola
- Ophthalmology Department, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jenny Youale
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Léa Parenti
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Mathilde Bertrand
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, AP-HP, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marianne Berdugo
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Laura Kowalczuk
- Ophthalmology Department, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jeffrey Boatright
- Ophthalmology Department, Emory University School of Medicine, Atlanta, GA, USA
- Center of Excellence, Atlanta Veterans Administration Medical Center, Decatur, GA, USA
| | - Emilie Picard
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers INSERM, UMRS1138, Team 17, Université de Paris, Université Sorbonne Paris Cité, Paris, France.
- Ophtalmopole, Cochin Hospital, AP-HP, Université de Paris, Paris, France.
| |
Collapse
|
2
|
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, Dogini DB, Lopes-Cendes I. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. ACTA ACUST UNITED AC 2020; 53:e9881. [PMID: 32813850 PMCID: PMC7446710 DOI: 10.1590/1414-431x20209881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Neurological diseases are responsible for approximately 6.8 million deaths every year. They affect up to 1 billion people worldwide and cause significant disability and reduced quality of life. In most neurological disorders, the diagnosis can be challenging; it frequently requires long-term investigation. Thus, the discovery of better diagnostic methods to help in the accurate and fast diagnosis of neurological disorders is crucial. Circulating nucleic acids (CNAs) are defined as any type of DNA or RNA that is present in body biofluids. They can be found within extracellular vesicles or as cell-free DNA and RNA. Currently, CNAs are being explored as potential biomarkers for diseases because they can be obtained using non-invasive methods and may reflect unique characteristics of the biological processes involved in several diseases. CNAs can be especially useful as biomarkers for conditions that involve organs or structures that are difficult to assess, such as the central nervous system. This review presents a critical assessment of the most current literature about the use of plasma and serum CNAs as biomarkers for several aspects of neurological disorders: defining a diagnosis, establishing a prognosis, and monitoring the disease progression and response to therapy. We explored the biological origin, types, and general mechanisms involved in the generation of CNAs in physiological and pathological processes, with specific attention to neurological disorders. In addition, we present some of the future applications of CNAs as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- D C F Bruno
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Donatti
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M Martin
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - V S Almeida
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Geraldis
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F S Oliveira
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
3
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
4
|
Stamenković S, Pavićević A, Mojović M, Popović-Bijelić A, Selaković V, Andjus P, Bačić G. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radic Biol Med 2017; 108:258-269. [PMID: 28366802 DOI: 10.1016/j.freeradbiomed.2017.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS.
Collapse
Affiliation(s)
- Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Aleksandra Pavićević
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia.
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|