1
|
Sen S, Ganta B, Rachel VN, Gogikar SK, Singh V, Sonti R, Dikundwar AG. Mapping Advantages and Challenges in Analytical Development for Fixed Dose Combination Products, a Review. J Pharm Sci 2024; 113:2028-2043. [PMID: 38697403 DOI: 10.1016/j.xphs.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Formulations containing more than one active ingredient are increasingly gaining popularity due to advantages with regard to patient convenience as well as reduced cost of production, packaging, and transportation. Such fixed-dose combinations (FDCs) demand for enhanced analytical methodologies and tools to efficiently achieve quality control of these complex products as compared to the conventional products containing only one active constituent. Highly efficient analytical methods can measure multiple constituents at once, improving their quality control. This review article discusses the challenges in the development of such methods due to the similarities or differences in the chemical identity of the participating drug molecules in an FDC. The latest developments in multiple analyte determination using various analytical techniques (HPLC, LC-MS, NMR, IR, powder XRD and DSC) are discussed, with a focus on special considerations in each case. The article discusses challenges with sample preparation of complex FDC products, and the use of Chemometrics and Quality by Design to develop efficient analytical methods. Lastly, an equation-based approach is proposed and demonstrated to arrive at a parameter referred to as "percentage efficiency gain" that would be useful in directly accessing the relevance and commercial benefits of a simultaneous method vis-a-vis separate methods for individual components.
Collapse
Affiliation(s)
- Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Brundharika Ganta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - V Nina Rachel
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shiva Kumar Gogikar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vartika Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India.
| |
Collapse
|
2
|
Balmanno A, Falconer JR, Ravuri HG, Mills PC. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:675. [PMID: 38794337 PMCID: PMC11124993 DOI: 10.3390/pharmaceutics16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
Collapse
Affiliation(s)
- Alexandra Balmanno
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Dutton Park Campus, Woolloongabba, QLD 4102, Australia;
| | - Halley G. Ravuri
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| |
Collapse
|
3
|
Khodov IA, Belov KV, Krestyaninov MA, Dyshin AA, Kiselev MG. Investigation of the Spatial Structure of Flufenamic Acid in Supercritical Carbon Dioxide Media via 2D NOESY. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041524. [PMID: 36837153 PMCID: PMC9961892 DOI: 10.3390/ma16041524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023]
Abstract
The search for new forms of already known drug compounds is an urgent problem of high relevance as more potent drugs with fewer side effects are needed. The trifluoromethyl group in flufenamic acid renders its chemical structure differently from other fenamates. This modification is responsible for a large number of conformational polymorphs. Therefore, flufenamic acid is a promising structural modification of well-known drug molecules. An effective approach in this field is micronization, employing "green" supercritical fluid technologies. This research raises some key questions to be answered on how to control polymorphic forms during the micronization of drug compounds. The results presented in this work demonstrate the ability of two-dimensional nuclear Overhauser effect spectroscopy to determine conformational preferences of small molecular weight drug compounds in solutions and fluids, which can be used to predict the polymorphic form during the micronization. Quantitative analysis was carried out to identify the conformational preferences of flufenamic acid molecules in dimethyl sulfoxide-d6 medium at 25 °C and 0.1 MPa, and in mixed solvent medium containing supercritical carbon dioxide at 45 °C and 9 MPa. The data presented allows predictions of the flufenamic acid conformational preferences of poorly soluble drug compounds to obtain new micronized forms.
Collapse
|
4
|
Khodov I, Belov K, Dyshin A, Krestyaninov M, Kiselev M. Pressure effect on lidocaine conformational equilibria in scCO2: A study by 2D NOESY. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Vorobei AM, Zuev YI, Dyshin AA, Parenago OO, Kiselev MG. Dispersion of Single-Walled Carbon Nanotubes via Rapid Expansion of Supercritical Suspensions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zuev YI, Vorobei AM, Parenago OO. Preparation of Polyurethane–Carbon Nanotube Composites via Suspension Supercritical Antisolvent Precipitation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121070174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
8
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Ustinovich KB, Ivanov VV, Tokunov YM, Loshkarev AA, Sapronova NI, Vorobei AM, Parenago OO, Kiselev MG. Study of Dispersions of Carbon Nanotubes Modified by the Method of Rapid Expansion of Supercritical Suspensions. Molecules 2020; 25:E4061. [PMID: 32899530 PMCID: PMC7570609 DOI: 10.3390/molecules25184061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
The effectiveness of carbon nanotubes (CNT) deagglomeration by rapid expansion of supercritical suspensions (RESS) in nitrogen and carbon dioxide fluids was studied in this work. Two different mechanisms of deagglomeration were proposed for these two fluids at various temperature and pressure conditions. Ultrasound attenuation spectroscopy was applied as an express method of determining median diameter and aspect ratio of CNTs. At least twofold reduction of the diameter was shown for CNT bundles processed by RESS technique. Aspect ratio of processed CNTs, calculated from acoustic attenuation spectra, increased to 340. These results were in a good agreement with atomic force microscopy data.
Collapse
Affiliation(s)
- Konstantin B. Ustinovich
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russia; (K.B.U.); (A.M.V.); (O.O.P.)
| | - Victor V. Ivanov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (V.V.I.); (Y.M.T.); (A.A.L.); (N.I.S.)
| | - Yurij M. Tokunov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (V.V.I.); (Y.M.T.); (A.A.L.); (N.I.S.)
| | - Alexander A. Loshkarev
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (V.V.I.); (Y.M.T.); (A.A.L.); (N.I.S.)
| | - Natalya I. Sapronova
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia; (V.V.I.); (Y.M.T.); (A.A.L.); (N.I.S.)
| | - Anton M. Vorobei
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russia; (K.B.U.); (A.M.V.); (O.O.P.)
| | - Olga O. Parenago
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russia; (K.B.U.); (A.M.V.); (O.O.P.)
- Chemical Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael G. Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|