1
|
Tretiakova D, Svirshchevskaya E, Onishchenko N, Alekseeva A, Boldyrev I, Kamyshinsky R, Natykan A, Lokhmotov A, Arantseva D, Shobolov D, Vodovozova E. Liposomal Formulation of a Melphalan Lipophilic Prodrug: Studies of Acute Toxicity, Tolerability, and Antitumor Efficacy. Curr Drug Deliv 2021; 17:312-323. [PMID: 32056524 DOI: 10.2174/1567201817666200214105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recently we developed a scalable scheme of synthesis of melphalan ester conjugate with 1,2-dioleoyl-sn-glycerol (MlphDG) and a protocol for the fabrication of its lyophilized liposomal formulation. OBJECTIVE Herein we compared this new convenient in use formulation of MlphDG with parent drug Alkeran® in rats concerning several toxicological parameters and evaluated its antitumor efficacy in the model of breast cancer in mice. METHOD Liposomes of approximately 100 nm in diameter, consisting of egg phosphatidylcholine, soybean phosphatidylinositol, and MlphDG, or placebo liposomes without the drug were produced by extrusion and lyophilized. Alkeran® or liposomes recovered by the addition of water were injected into the tail vein of animals. Clinical examination of rats consisted of detailed inspection of the behavior, general status, and hematological parameters. Mice with transplanted breast cancer WNT-1 were subjected to multiple treatments with the drugs; tumor growth inhibition was assessed, together with cellular immunity parameters. RESULTS Liposomes showed approximately two times lower acute toxicity and better tolerability than Alkeran® in terms of behavioral criteria. The toxic effects of liposomes on hemopoiesis were manifested at higher doses than in the case of Alkeran®, proportionally to the difference in LD50 values. The formulation inhibited tumor growth significantly more effectively than Alkeran®, delaying the start of the exponential growth phase and exhibiting no additional toxic effects toward bone marrow. CONCLUSION Lower toxicity of the liposomal formulation of MlphDG promises improved quality of life for cancer patients in need of treatment with melphalan. Presumably, the list of indications for melphalan therapy could be extended.
Collapse
Affiliation(s)
- Daria Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ivan Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman Kamyshinsky
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Alexey Natykan
- Drugs Technology Ltd., Khimki, Мoscow Region, Russian Federation
| | - Anton Lokhmotov
- Drugs Technology Ltd., Khimki, Мoscow Region, Russian Federation
| | - Diana Arantseva
- Drugs Technology Ltd., Khimki, Мoscow Region, Russian Federation
| | - Dmitry Shobolov
- Drugs Technology Ltd., Khimki, Мoscow Region, Russian Federation
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Jonoush ZA, Farahani M, Bohlouli M, Niknam Z, Golchin A, Hatamie S, Rezaei-Tavirani M, Omidi M, Zali H. Surface Modification of Graphene and its Derivatives for Drug Delivery Systems. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507093954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, carbon-based nanostructure materials are regarded as promising carriers for
drug delivery to improve the effective treatment of diseases. The formation of covalent and noncovalent
molecular bonds can be used for surface modification of nano-carriers in order to manipulate
their toxicity, water solubility, and cellular internalization. Graphene and its derivatives have
shown important potential in drug delivery systems. Among different graphene derivatives, Graphene
Oxide (GO) is the most extensively used derivative. GO sheets have possessed certain oxygen
functional groups including carboxylic acid groups at the edges, epoxy and hydroxyl groups on the
basal planes. The oxygen groups on the surface of GO sheets enhance their capabilities for functionalization
with chemical and bioactive molecules. In this review, we highlight the recent researches
about the effect of reactive sites on the surface of GO and its derivatives in drug delivery systems.
Therefore, the application of GO and its derivatives have been discussed as a delivery system in cancer
treatment, gene therapy, and combination therapy, followed by discussions on their related issues.
Finally, the review will provide a future perspective to the applications of GO-based materials as part
of drug delivery systems, and may open up new viewpoints to motivate broader interests across these
interdisciplinary fields.
Collapse
Affiliation(s)
- Zahra A. Jonoush
- Department of Immunology, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadie Hatamie
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013, Taiwan
| | | | - Meisam Omidi
- School of Dentistry, Marquette University, Wisconsin, United States
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mohammed-Saeid W, Karoyo AH, Verrall RE, Wilson LD, Badea I. Inclusion Complexes of Melphalan with Gemini-Conjugated β-Cyclodextrin: Physicochemical Properties and Chemotherapeutic Efficacy in In-Vitro Tumor Models. Pharmaceutics 2019; 11:pharmaceutics11090427. [PMID: 31443452 PMCID: PMC6781286 DOI: 10.3390/pharmaceutics11090427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
β-cyclodextrin (βCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host–guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, βCD was chemically conjugated to an 18-carbon chain cationic gemini surfactant which undergoes self-assembly to form nanoscale complexes. The novel gemini surfactant-modified βCD carrier host (hereafter referred to as 18:1βCDg) was designed to combine the solubilization and encapsulation capacity of the βCD macrocycle and the cell-penetrating ability of the gemini surfactant conjugate. Melphalan (Mel), a chemotherapeutic agent for melanoma, was selected as a model for a poorly soluble drug. Characterization of the 18:1βCDg-Mel host–guest complex was carried out using 1D/2D 1H NMR spectroscopy and dynamic light scattering (DLS). The 1D/2D NMR spectral results indicated the formation of stable and well-defined 18:1βCDg-Mel inclusion complexes at the 2:1 host–guest mole ratio; whereas, host–drug interaction was attenuated at greater 18:1βCDg mole ratio due to hydrophobic aggregation that accounts for the reduced Mel solubility. The in vitro evaluations were performed using monolayer, 3D spheroid, and Mel-resistant melanoma cell lines. The 18:1βCDg-Mel complex showed significant enhancement in the chemotherapeutic efficacy of Mel with 2–3-fold decrease in Mel half maximal inhibitory concentration (IC50) values. The findings demonstrate the potential applicability of the 18:1βCDg delivery system as a safe and efficient carrier for a poorly soluble chemotherapeutic in melanoma therapy.
Collapse
Affiliation(s)
- Waleed Mohammed-Saeid
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
- College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Abdalla H Karoyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Ronald E Verrall
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
4
|
Alekseeva AS, Chugunov AO, Volynsky PE, Onishchenko NR, Molotkovsky JG, Efremov RG, Boldyrev IA, Vodovozova EL. Behavior of Doxorubicin Lipophilic Conjugates in Liposomal Lipid Bilayers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tabatabaei SN, Derbali RM, Yang C, Superstein R, Hamel P, Chain JL, Hardy P. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release 2019; 298:177-185. [PMID: 30776396 DOI: 10.1016/j.jconrel.2019.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/31/2018] [Accepted: 02/12/2019] [Indexed: 01/26/2023]
Abstract
Melphalan is an efficient chemotherapeutic agent that is currently used to treat retinoblastoma (Rb); however, the inherent risk of immunogenicity and the hazardous integration of this drug in healthy cells is inevitable. MicroRNAs are short non-coding single-stranded RNAs that affect a vast range of biological processes. Previously, we focused on the regulatory role of miR-181a during cancer development and progression. In this manuscript, 171 nm switchable lipid nanoparticles (LNP) co-delivered melphalan and miR-181a with encapsulation efficiencies of 93%. Encapsulation of melphalan in LNP significantly improved its therapeutic efficiency. Gene analysis shows that miR-181a decreases the expression of anti-proliferative gene MAPK1 and anti-apoptotic gene Bcl-2, but significantly increased the expression of pro-apoptotic gene BAX. Our results suggest that the two agents have a complementary effect in reducing the viability of cultured Rb cells (primary and cell line) and decreasing Rb cell counts in an in-vivo xenograft Rb model in rats. Our results suggest that the proposed co-delivery technique significantly increases the therapeutic impact, allows for lower administration of melphalan, and consequently, could minimize the cytotoxic side-effects of this drug.
Collapse
Affiliation(s)
- Seyed Nasrollah Tabatabaei
- Departments of Pediatrics, Physiology and Pharmacology, University of Montréal, Montréal, QC, Canada; Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rabeb Mouna Derbali
- Gene Delivery Laboratory, Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada
| | - Chun Yang
- Departments of Pediatrics, Physiology and Pharmacology, University of Montréal, Montréal, QC, Canada
| | - Rosanne Superstein
- Department of Ophthalmology, University of Montréal, Montréal, QC, Canada
| | - Patrick Hamel
- Department of Ophthalmology, University of Montréal, Montréal, QC, Canada
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Physiology and Pharmacology, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Sun B, Luo C, Cui W, Sun J, He Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Control Release 2017; 264:145-159. [DOI: 10.1016/j.jconrel.2017.08.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
|
7
|
Mohammed-Saeid W, Michel D, Badea I, El-Aneed A. Rapid and simple flow injection analysis tandem mass spectrometric method for the quantification of melphalan in a lipid-based drug delivery system. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1481-1490. [PMID: 28667829 DOI: 10.1002/rcm.7926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The use of the anticancer drug melphalan is limited due to its poor water solubility. To address this limitation, it is incorporated within a novel delivery system using β-cyclodextrin-gemini surfactants (18:1βCDg). METHODS Herein, two fast and simple flow injection analysis/tandem mass spectrometric (FIA-MS/MS) methods are developed for the quantification of melphalan (Mel) within the drug delivery system so that the solubilization efficiency of the system can be assessed. FIA-MS/MS methods are developed using a triple quadrupole linear ion trap mass spectrometer, equipped with electrospray ionization (ESI) in the positive ion mode. A deuterated form of melphalan (melphalan-d8) was used as an internal standard (IS). The methods were validated according to the FDA guidance. RESULTS A linearity in the range of 2-100 ng/mL and accuracy and precision below 15% were observed for all standard points and quality control samples. The intra- and inter-day variations and freeze-thaw stability were within the acceptable range according to the criteria set by regulatory guidelines. On the other hand, other stability measures, such as room temperature stability and long-term stability, did not meet the required guidelines in some cases, indicating the need for quick sample analysis upon preparation. Such a fact could have been overlooked if full method validation had not been performed. CONCLUSIONS The developed methods were applied to determine the encapsulation/solubilization of the [18:1βCDg/Mel] delivery system. 18:1βCDg enhances the aqueous solubility of melphalan without the need for co-solvent. The highest melphalan solubility was observed at a melphalan18:1βCDg/Mel complex molar ratio of 2:1. This study demonstrated that a fast analysis for the purpose of quantifying a chemically unstable drug, such as melphalan, is feasible and important for the development of commercial dosage forms.
Collapse
Affiliation(s)
- Waleed Mohammed-Saeid
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
- College of Pharmacy, Taibah University, Madina, Saudi Arabia
| | - Deborah Michel
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Ildiko Badea
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Anas El-Aneed
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
8
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
9
|
Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in cancer therapy. J Control Release 2015; 208:25-41. [PMID: 25617724 DOI: 10.1016/j.jconrel.2015.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Application of nanotechnology in the medical field (i.e., nanomedicine) plays an important role in the development of novel drug delivery methods. Nanoscale drug delivery systems can indeed be customized with specific functionalities in order to improve the efficacy of the treatments. However, despite the progresses of the last decades, nanomedicines still face important obstacles related to: (i) the physico-chemical properties of the drug moieties which may reduce the total amount of loaded drug; (ii) the rapid and uncontrolled release (i.e., burst release) of the encapsulated drug after administration and (iii) the instability of the drug in biological media where a fast transformation into inactive metabolites can occur. As an alternative strategy to alleviate these drawbacks, the prodrug approach has found wide application. The covalent modification of a drug molecule into an inactive precursor from which the drug will be freed after administration offers several benefits such as: (i) a sustained drug release (mediated by chemical or enzymatic hydrolysis of the linkage between the drug-moiety and its promoiety); (ii) an increase of the drug chemical stability and solubility and, (iii) a reduced toxicity before the metabolization occurs. Lipids have been widely used as building blocks for the design of various prodrugs. Interestingly enough, these lipid-derivatized drugs can be delivered through a nanoparticulate form due to their ability to self-assemble and/or to be incorporated into lipid/polymer matrices. Among the several prodrugs developed so far, this review will focus on the main achievements in the field of lipid-based prodrug nanocarriers designed to improve the efficacy of anticancer drugs. Gemcitabine (Pubchem CID: 60750); 5-fluorouracil (Pubchem CID: 3385); Doxorubicin (Pubchem CID: 31703); Docetaxel (Pubchem CID: 148124); Methotrexate (Pubchem CID: 126941); Paclitaxel (Pubchem CID: 36314).
Collapse
Affiliation(s)
- Simona Mura
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| | - Duc Trung Bui
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
10
|
Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release 2012; 160:394-400. [PMID: 22210161 DOI: 10.1016/j.jconrel.2011.12.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 02/07/2023]
|
11
|
Moiseeva EV, Kuznetsova NR, Svirshchevskaya EV, Bovin NV, Sitnikov NS, Shavyrin AS, Beletskaya IP, Combes S, Fedorov AY, Vodovozova EL. Liposome formulations of combretastatin A4 and its 4-arylcoumarin analogue prodrugs: The antitumor effect in the mouse model of breast cancer. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|