1
|
Mumm LE, Ange-van Heugten KD, Young S, Bibus D, Georoff TA, Minter LJ. BLOOD FATTY ACID PROFILES IN CHILEAN ( PHOENICOPTERUS CHILENSIS) AND CARIBBEAN ( PHOENICOPTERUS RUBER) FLAMINGOS IN MANAGED CARE. J Zoo Wildl Med 2024; 55:1032-1041. [PMID: 39699148 DOI: 10.1638/2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 12/20/2024] Open
Abstract
Flamingos in managed care are vulnerable to inflammatory states, including pododermatitis, trauma, and capture myopathy. Fatty acids are an important component of well-balanced nutrition and crucial to endogenous immune responses associated with these conditions, yet fatty acids have not been assessed in flamingos. This study reported complete whole blood circulating fatty acid profiles in two flamingo species in managed care receiving different diets. Whole blood from Chilean flamingos (Phoenicopterus chilensis) (n=16) and Caribbean flamingos (Phoenicopterus ruber) (n=17) was collected during routine exams and prepared on blood spot cards for complete fatty acid profile analysis in which 24 individual fatty acids, nine fatty acids groups, and four calculated parameters were quantifiable. Non-parametric statistical analysis compared profiles between species, and between sex of Chilean flamingos. The median ratio of omega-6/omega-3 fatty acids was 5.64. Chilean flamingos had significantly (P<0.05) higher percentages of 11 individual fatty acids, total polyunsaturated and highly unsaturated fatty acids, total omega-3 and omega-6 fatty acids, arachidonic acid (AA; 20:4w6)/eicosapentaenoic acid (EPA; 20:5w3) ratio, and total EPA + DHA, whereas Caribbean flamingos had significantly (P<0.05) higher percentages of eight individual fatty acids, and total saturated fatty acids. Male Chilean flamingos had significantly (P<0.05) higher percentages of AA, EPA, and total polyunsaturated fatty acids, whereas females had significantly (P<0.05) higher oleic acid (18:1w9), total monounsaturated fatty acids, and total omega-9 fatty acids. Differences reported are highly attributable to variability in diet, although differences in fatty acid synthesizing pathways and hormonal influences may also play a role. This novel fatty acid data set in healthy flamingos is a valuable reference for complete health evaluations in managed care settings. Further comparisons with controlled diets and inclusion of free-ranging animals may enhance clinical utility.
Collapse
Affiliation(s)
- Lauren E Mumm
- North Carolina Zoo, Asheboro, NC 27205, USA,
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University Veterinary Teaching Hospital, Raleigh, NC 27606, USA
| | | | - Sam Young
- Greensboro Science Center, Greensboro, NC 27455, USA
| | - Doug Bibus
- Lipid Technologies LLC, Austin, MN 55912, USA
| | | | - Larry J Minter
- North Carolina Zoo, Asheboro, NC 27205, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University Veterinary Teaching Hospital, Raleigh, NC 27606, USA
| |
Collapse
|
2
|
Lamarre J, Wilson DR. Short-term dietary changes are reflected in the cerebral content of adult ring-billed gulls. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240616. [PMID: 39113770 PMCID: PMC11303033 DOI: 10.1098/rsos.240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) are produced primarily in aquatic ecosystems and are considered essential nutrients for predators given their structural role in vertebrates' cerebral tissues. Alarmingly, with urbanization, many aquatic animals now rely on anthropogenic foods lacking n3-LCPUFAs. In this study undertaken in Newfoundland (Canada), we tested whether recent or longer term diet explains the cerebral fatty acid composition of ring-billed gulls (Larus delawarensis), a seabird that now thrives in cities. During the breeding season, cerebral levels of n3-LCPUFAs were significantly higher for gulls nesting in a natural habitat and foraging on marine food (mean ± s.d.: 32 ± 1% of total identified fatty acids) than for urban nesters exploiting rubbish (27 ± 1%). Stable isotope analysis of blood and feathers showed that urban and natural nesters shared similar diets in autumn and winter, suggesting that the difference in cerebral n3-LCPUFAs during the breeding season was owing to concomitant and transient differences in diet. We also experimentally manipulated gulls' diets throughout incubation by supplementing them with fish oil rich in n3-LCPUFAs, a caloric control lacking n3-LCPUFAs, or nothing, and found evidence that fish oil increased urban nesters' cerebral n3-LCPUFAs. These complementary analyses provide evidence that the brain of this seabird remains plastic during adulthood and responds to short-term dietary changes.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| | - David R. Wilson
- Department of Psychology, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| |
Collapse
|
3
|
Gladyshev MI. Content of Docosahexaenoic Acid in Pectoral Muscles of Birds Correlates with Wing Beat Frequency. DOKL BIOCHEM BIOPHYS 2022; 507:350-352. [PMID: 36787000 DOI: 10.1134/s1607672922340075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 02/15/2023]
Abstract
Docosahexaenoic acid (22:6n-3, DHA) is a structural component of cell membranes and due to a peculiar form of its molecule exerts a high lateral pressure in the membranes enhancing activity of membrane-associated enzymes. A high content of DHA probably provides a high frequency of contraction and a continuous working of skeletal muscles. To estimate the probable physiological and biochemical role of DHA in muscle tissue, a relation of its contents in pectoral muscles of birds with wing beat frequency was evaluated. A high statistically significant correlation between the content of DHA in pectoral muscles of birds and species-specific wing beat frequency was found.
Collapse
Affiliation(s)
- M I Gladyshev
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, Russia. .,Siberian Federal University, Krasnoyarsk, Russia.
| |
Collapse
|
4
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Foraging on anthropogenic food predicts problem-solving skills in a seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157732. [PMID: 35931163 DOI: 10.1016/j.scitotenv.2022.157732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Species and populations with greater cognitive performance are more successful at adapting to changing habitats. Accordingly, urban species and populations often outperform their rural counterparts on problem-solving tests. Paradoxically, urban foraging also might be detrimental to the development and integrity of animals' brains because anthropogenic foods often lack essential nutrients such as the long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are important for cognitive performance in mammals and possibly birds. We tested whether urbanization or consumption of EPA and DHA are associated with problem-solving abilities in ring-billed gulls, a seabird that historically exploited marine environments rich in omega-3 fatty acids but now also thrives in urban centres. Using incubating adults nesting across a range of rural to urban colonies with equal access to the ocean, we tested whether urban gulls preferentially consumed anthropogenic food while rural nesters relied on marine organisms. As we expected individual variation in foraging habits within nesting location, we characterized each captured gulls' diet using stable isotope and fatty acid analyses of their red blood cells. To test their problem-solving abilities, we presented the sampled birds with a horizontal rendition of the string-pull test, a foraging puzzle often used in animal cognitive studies. The isotopic and fatty acid profiles of urban nesters indicated a diet comprising primarily anthropogenic food, whereas the profiles of rural nesters indicated a high reliance on marine organisms. Despite the gulls' degree of access to urban foraging habitat not predicting solving success, birds with biochemical profiles reflecting anthropogenic food (less DHA and a higher carbon-13 ratio in their red blood cells) had a greater probability of solving the string-pull test. These results suggest that experience foraging on anthropogenic food is the main explanatory factor leading to successful problem-solving, while regular consumption of omega-3s during incubation appears inconsequential.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland and Labrador, St. John's, Canada.
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, Canada
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| |
Collapse
|
5
|
Wu X, Zheng X, Yu L, Lu R, Zhang Q, Luo XJ, Mai BX. Biomagnification of Persistent Organic Pollutants from Terrestrial and Aquatic Invertebrates to Songbirds: Associations with Physiochemical and Ecological Indicators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12200-12209. [PMID: 35952373 DOI: 10.1021/acs.est.2c02177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) is affected by physiochemical properties of POPs and ecological factors of wildlife. In this study, influences on species-specific biomagnification of POPs from aquatic and terrestrial invertebrates to eight songbird species were investigated. The median concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in birds were 175 to 13 200 ng/g lipid weight (lw) and 62.7 to 3710 ng/g lw, respectively. Diet compositions of different invertebrate taxa for songbird species were quantified by quantitative fatty acid signature analysis. Aquatic insects had more contributions of more hydrophobic POPs, while terrestrial invertebrates had more contributions of less hydrophobic PCBs in songbirds. Biomagnification factors (BMFs) and trophic magnification factors had parabolic relationships with log KOW and log KOA. The partition ratios of POPs between bird muscle and air were significantly and positively correlated with log KOA of POPs, indicating respiratory elimination as an important determinant in biomagnification of POPs in songbirds. In this study, the species-specific biomagnification of POPs in songbird species cannot be explained by stable isotopes of carbon and nitrogen and body parameters of bird species. BMFs of most studied POPs were significantly correlated with proportions of polyunsaturated fatty acids in different species of songbirds.
Collapse
Affiliation(s)
- Xiaodan Wu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lehuan Yu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiang Zhang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
6
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
7
|
Johnson JJ, Olin JA, Polito MJ. A multi-biomarker approach supports the use of compound-specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1781-1791. [PMID: 31344761 DOI: 10.1002/rcm.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Determining the flow of energy from primary producers to higher trophic levels in complex systems remains an important task for ecologists. Biomarkers can be used to trace carbon or energy sources contributing to an organism's tissues. However, different biomarkers vary in their ability to trace carbon sources based on how faithfully they transfer between trophic levels. Comparing emerging biomarker techniques with more commonly used techniques can demonstrate the relative efficacy of each in specific systems. METHODS Two common biomarker techniques, fatty acid analysis (FAA) and bulk stable isotope analysis (SIA), and one emerging biomarker technique, compound-specific stable isotope analysis of amino acids (CSIA-AA), were compared to assess their ability to characterize and quantify basal carbon sources supporting the seaside sparrow (Ammodramus maritimus), a common salt marsh species. Herbivorous insect and deposit-feeding fiddler crab biomarker values were analyzed as proxies of major terrestrial and aquatic basal carbon sources, respectively. RESULTS All three biomarker techniques indicated that both terrestrial and aquatic carbon sources were important to seaside sparrows. However, FAA could only be evaluated qualitatively, due to a currently limited understanding of trophic modification of fatty acids between primary producer and this consumer's tissues. Quantitative stable isotope (SIA or CSIA-AA) mixing models predicted nearly equal contributions of terrestrial and aquatic carbon sources supporting seaside sparrows, yet estimates based on CSIA-AA had greater precision. CONCLUSIONS These findings support the use of CSIA-AA as an emerging tool to quantify the relative importance of basal carbon sources in salt marsh consumers. Integrating multiple biomarker techniques, with their differing benefits and limitations, will help to constrain models of carbon and energy flow in future ecosystem studies.
Collapse
Affiliation(s)
- Jessica J Johnson
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jill A Olin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
8
|
Gladyshev MI, Sushchik NN. Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges. Biomolecules 2019; 9:biom9090485. [PMID: 31547473 PMCID: PMC6770104 DOI: 10.3390/biom9090485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 01/05/2023] Open
Abstract
Over the past three decades, studies of essential biomolecules, long-chain polyunsaturated fatty acids of the omega-3 family (LC-PUFAs), namely eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have made considerable progress, resulting in several important assumptions. However, new data, which continue to appear, challenge these assumptions. Based on the current literature, an attempt is made to reconsider the following assumptions: 1. There are algal classes of high and low nutritive quality. 2. EPA and DHA decrease with increasing eutrophication in aquatic ecosystems. 3. Animals need EPA and DHA. 4. Fish are the main food source of EPA and DHA for humans. 5. Culinary treatment decreases EPA and DHA in products. As demonstrated, some of the above assumptions need to be substantially specified and changed.
Collapse
Affiliation(s)
- Michail I Gladyshev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, 50/50, Krasnoyarsk 660036, Russia.
- Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia.
| | - Nadezhda N Sushchik
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, 50/50, Krasnoyarsk 660036, Russia.
- Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia.
| |
Collapse
|
9
|
|