1
|
Duan H, Song S, Li R, Hu S, Zhuang S, Liu S, Li X, Gao W. Strategy for treating MAFLD: Electroacupuncture alleviates hepatic steatosis and fibrosis by enhancing AMPK mediated glycolipid metabolism and autophagy in T2DM rats. Diabetol Metab Syndr 2024; 16:218. [PMID: 39261952 PMCID: PMC11389443 DOI: 10.1186/s13098-024-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Recent studies have highlighted type 2 diabetes (T2DM) as a significant risk factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This investigation aimed to assess electroacupuncture's (EA) impact on liver morphology and function in T2DM rats, furnishing experimental substantiation for its potential to stall MAFLD progression in T2DM. METHODS T2DM rats were induced by a high-fat diet and a single intraperitoneal injection of streptozotocin, and then randomly assigned to five groups: the T2DM group, the electroacupuncture group, the metformin group, combination group of electroacupuncture and metformin, combination group of electroacupuncture and Compound C. The control group received a standard diet alongside intraperitoneal citric acid - sodium citrate solution injections. After a 6-week intervention, the effects of each group on fasting blood glucose, lipids, liver function, morphology, lipid droplet infiltration, and fibrosis were evaluated. Techniques including Western blotting, qPCR, immunohistochemistry, and immunofluorescence were employed to gauge the expression of key molecules in AMPK-associated glycolipid metabolism, insulin signaling, autophagy, and fibrosis pathways. Additionally, transmission electron microscopy facilitated the observation of liver autophagy, lipid droplets, and fibrosis. RESULTS Our studies indicated that hyperglycemia, hyperlipidemia and IR promoted lipid accumulation, pathological and functional damage, and resulting in hepatic steatosis and fibrosis. Meanwhile, EA enhanced the activation of AMPK, which in turn improved glycolipid metabolism and autophagy through promoting the expression of PPARα/CPT1A and AMPK/mTOR pathway, inhibiting the expression of SREBP1c, PGC-1α/PCK2 and TGFβ1/Smad2/3 signaling pathway, ultimately exerting its effect on ameliorating hepatic steatosis and fibrosis in T2DM rats. The above effects of EA were consistent with metformin. The combination of EA and metformin had significant advantages in increasing hepatic AMPK expression, improving liver morphology, lipid droplet infiltration, fibrosis, and reducing serum ALT levels. In addition, the ameliorating effects of EA on the progression of MAFLD in T2DM rats were partly disrupted by Compound C, an inhibitor of AMPK. CONCLUSIONS EA upregulated hepatic AMPK expression, curtailing gluconeogenesis and lipogenesis while boosting fatty acid oxidation and autophagy levels. Consequently, it mitigated blood glucose, lipids, and insulin resistance in T2DM rats, thus impeding liver steatosis and fibrosis progression and retarding MAFLD advancement.
Collapse
Affiliation(s)
- Haoru Duan
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, Chaoyang District Traditional Chinese Medicine Hospital, Beijing, 100026, China
| | - Shanshan Song
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, China- Japan Friendship Hospital, Beijing, 100029, China
| | - Rui Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Suqin Hu
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Henan, 450002, China
| | - Shuting Zhuang
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaoyang Liu
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolu Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Gao
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
2
|
Xu T, Yu Z, Liu Y, Lu M, Gong M, Li Q, Xia Y, Xu B. Hypoglycemic Effect of Electroacupuncture at ST25 Through Neural Regulation of the Pancreatic Intrinsic Nervous System. Mol Neurobiol 2021; 59:703-716. [PMID: 34757591 PMCID: PMC8786791 DOI: 10.1007/s12035-021-02609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Electroacupuncture (EA) is considered to have potential antidiabetic effects; however, the role of the pancreatic intrinsic nervous system (PINS) in EA-induced amelioration of type 2 diabetes (T2DM) remains unclear. Therefore, we investigated whether EA at ST25 exerts any beneficial effects on insulin resistance (IR), inflammation severity, and pancreatic β cell function via the PINS in a rat model of a high-fat diet-streptozotocin (HFD/STZ)-induced diabetes. To this end, Sprague Dawley rats were fed with HFD to induce IR, followed by STZ (35 mg/kg, i.p.) injection to establish the T2DM model. After hyperglycemia was confirmed as fasting glucose level > 16.7 mmol/L, the rats were treated with EA (2 mA, 2/15 Hz) for the next 28 days. Model rats showed increased serum glucose, insulin, IR, and TNF-α levels with a concomitant decrease in β cell function. Microscopy examination of the pancreas revealed pathological changes in islets, which reverted to near-normal levels after EA at ST25. EA improved islet cell morphology by increasing islet area and reducing vacuolation. EA at ST25 decreased transient receptor potential vanilloid 1 (TRPV1) and increased substance P (SP) and calcitonin gene-related peptide (CGRP) expression. Subsequently, insulin secretion decreased and impaired pancreatic endocrine function was restored through the TRPV1 channel (SP/CGRP)-insulin circuit. EA increased choline acetyltransferase and neuropeptide Y expression and controlled inflammation. It also enhanced the cocaine and amphetamine-regulated transcript prepropeptide expression and promoted glucagon-like peptide-1 secretion. Additionally, the electrophysiological activity of PINS during acupuncture (2.71 ± 1.72 Hz) was significantly increased compared to the pre-acupuncture frequency (0.32 ± 0.37 Hz, P < 0.05). Thus, our study demonstrated the beneficial effect of EA on β cell dysfunction via the PINS in rat models of HFD-STZ-induced T2DM.
Collapse
Affiliation(s)
- Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meirong Gong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youbing Xia
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Electroacupuncture at Bilateral ST36 Acupoints: Inducing the Hypoglycemic Effect through Enhancing Insulin Signal Proteins in a Streptozotocin-Induced Rat Model during Isoflurane Anesthesia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5852599. [PMID: 34659435 PMCID: PMC8514912 DOI: 10.1155/2021/5852599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
In rats with 2-deoxy-2-(3-(methyl-3-nitrosoureido)-d-glucopyranose streptozotocin- (STZ-) induced insulin-dependent diabetes (IDDM), continuous 15 Hz electrical stimulation at bilateral ST36 acupoints for 30 and 60 minutes has been shown to prevent hyperglycemia. We hypothesized that the mechanism of action in STZ-induced IDDM rats is that electrical stimulation at bilateral ST36 acupoints is effective in improving insulin receptor substrate type 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expressions associated with counteracting both plasma glucose and free fatty acid (FFA) levels during isoflurane anesthesia. In this study, twenty-six healthy male Wistar rats, weighing 250–350 g and aged 8–10 weeks were tested. Rats in the experimental electroacupuncture (EA) group (n = 13) received 15 Hz electrical stimulation at bilateral ST 36 acupoints for 30 and 60 minutes. Rats in the control group (n = 13) were handled but not subjected to the stimulation treatment. In both IDDM and normal Wistar rats, we observed a negative change in plasma glucose levels when rats were given the EA treatment, but a positive change in plasma glucose without EA treatment relative to baseline. Within the IDDM group, a negative change in FFA levels was observed when rats were given the EA treatment, while a positive change in the FFA level was shown without the EA treatment. In the expressed protein signals, we found a significant elevation in both GLUT4 and IRS-1 proteins in the IDDM group treated by EA. Moreover, we found a significant mean difference between GLUT4 and IRS-1 protein expression levels relative to β-actin. Our findings suggested that EA at bilateral ST36 acupoints could serve as an effective strategy for lowering plasma glucose by decreasing free fatty acid levels and improving the expression of IRS-1 and GLUT4 proteins in a STZ-IDDM rat model during isoflurane anesthesia.
Collapse
|
4
|
Zhang T, Huang F, Li B, Huang C, Xu C, Lin K, Lin D. NMR-based metabolomic analysis for the effects of Huiyang Shengji extract on rat diabetic skin ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112978. [PMID: 32442586 DOI: 10.1016/j.jep.2020.112978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huiyang Shengji formula (HSF) is a compound Chinese herbal medicine prescription, and has long been used for treating chronic non-healing wounds. AIM OF THE STUDY The purpose of this study was to provide new insight into molecular mechanisms of healing effects of the HSF treatments. MATERIALS AND METHODS We established a rat diabetic skin ulcer (DSU) model, and assessed healing effects of four HSF treatments on DSUs by calculating wound healing rates and immunohistochemical detection of the expressions of angiogenesis-related factors in the model rats (Mod) relative to normal rats (Nor), including Huiyang extract (HE), Shengji extract (SE), Huiyang Shengji extract (HSE) and HSE associated with acupuncture (Ac-HSE). We then performed NMR-based metabolomic analyses on skin tissues of the Nor, Mod, HSE-treated, Ac-HSE-treated rats to address metabolic mechanisms underlying these effects. RESULTS These treatments up-regulated expressions of two angiogenesis-related factors VEGF and CD31, and improved efficacy of healing DSUs, in which HSE and Ac-HSE exhibited the most significant effects. Compared with Mod, HSE and Ac-HSE groups shared four characteristic metabolites (lactate, histidine, succinate and acetate) and four significantly altered metabolic pathways with Nor. Both HSE and Ac-HSE treatments could partly reverse the metabolically disordered pathological state of DSUs to the normal state. They might improve wound healing through promoting glucose metabolism, BCAAs metabolism, and enhancing antioxidant capacity and angiogenesis in DSU tissues. Ac-HSE significantly enhanced wound healing rates compared to HSE, potentially owing to significant capacities of enhancing anti-oxidation and angiogenesis and interfering three more metabolic pathways. CONCLUSIONS This work provides a mechanistic understanding of the healing effects of the HSE and Ac-HSE treatments on DSUs, is of benefit to improvements of the HSF treatments for clinically healing chronic non-healing wounds.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Bin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Chang Xu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Chung YC, Chen YI, Lin CM, Chang SW, Hsu TH, Ho WJ, Lin JG, Chang SL, Tzeng CY. Electroacupuncture combined with acarbose improves insulin sensitivity via peroxisome proliferator-activated receptor γ activation and produces a stronger glucose-lowering effect than acarbose alone in a rat model of steroid-induced insulin resistance. Acupunct Med 2020; 38:335-342. [PMID: 32297559 DOI: 10.1177/0964528419901135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies have reported that electroacupuncture (EA) induces a glucose-lowering effect by improving insulin resistance (IR) and reduces plasma free fatty acid (FFA) levels in rats with steroid-induced insulin resistance (SIIR). In addition, EA can activate cholinergic nerves and stimulate endogenous opioid peptides to lower plasma glucose in streptozotocin-induced hyperglycemic rats. The aim of this study was to investigate the glucose-lowering effects of 15 Hz EA at bilateral ST36 in combination with acarbose (ACA). We hypothesized that EA combined with ACA would produce a stronger glucose-lowering effect than ACA alone. METHODS In this study, normal Wistar rats and SIIR rats were randomly divided into two groups: ACA and ACA + EA. To explore the potential mechanisms underlying the glucose-lowering effect, plasma FFA/insulin and insulin transduction signal pathway proteins were assayed. RESULTS Combined ACA + EA treatment had a greater glucose-lowering effect than ACA alone in normal Wistar rats (-45% ± 3% vs -19% ± 3%, p < 0.001) and SIIR model rats (-43% ± 2% vs -16% ± 6%, p < 0.001). A significant reduction in plasma FFA levels, improvement in homeostatic model assessment of IR (HOMA-IR) index (-48.9% ± 4.0%, p < 0.001) and insulin sensitivity index (102% ± 16.9%, p < 0.001), and significant increases in insulin receptor substrate 1, glucose transporter 4, and peroxisome proliferator-activated receptor γ protein expressions in skeletal muscle, were also observed in the ACA + EA group of SIIR rats. CONCLUSION Combined EA and ACA therapy had a greater glucose-lowering effect than ACA monotherapy; this combined therapy could be more effective at improving IR in SIIR rats, which may be related to a reduction in plasma FFA levels and an elevation of insulin signaling proteins. Whether this combined therapy has an effect in type 2 diabetes mellitus (T2DM) patients still needs to be explored.
Collapse
Affiliation(s)
- Yuan-Chiang Chung
- Department of Surgery, Cheng Ching Hospital, Taichung City.,Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Ying-I Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Chih-Ming Lin
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,Department of Neurology, Changhua Christian Hospital, Changhua
| | - Su-Wei Chang
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Tai-Hao Hsu
- Department of Food Science and Biotechnology, Da-Yeh University, Dacun
| | - Wai-Jane Ho
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Jaug-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung City
| | - Shih-Liang Chang
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,School of Chinese Medicine, China Medical University, Taichung City.,College of Biotechnology and Bioresource, Da-Yeh University, Changhua
| | - Chung-Yuh Tzeng
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung City
| |
Collapse
|
6
|
Liu X, Zhang Y, Liang H, Xu Y. Overexpression of microRNA-216a-3p Accelerates the Inflammatory Response in Cardiomyocytes in Type 2 Diabetes Mellitus by Targeting IFN-α2. Front Endocrinol (Lausanne) 2020; 11:522340. [PMID: 33329376 PMCID: PMC7729074 DOI: 10.3389/fendo.2020.522340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a chronic, hyperglycemia-associated, metabolic disorder. Heart disease is a major complication of T2DM. The present study aimed to explore the effects of miR-216a-3p on cardiomyocyte proliferation, apoptosis, and inflammation in T2DM through the Toll-like receptor (TLR) pathway involving interferon-α2 (IFN-α2) mediation. Methods: T2DM was induced in rats by a high-fat diet, in combination with an intraperitoneal injection of low-dose streptozotocin. ELISAs were conducted to measure inflammatory-related factors in serum. Next, isolated cardiomyocytes were used in loss- and gain-of-function experiments, followed by MTT and flow cytometry assays, conducted to evaluate cell proliferation, cell cycle, and apoptosis. Results: Our results revealed an increase in the inflammatory response in T2DM rat models, accompanied by significantly increased expression of miR-216a-3p and TLR pathway-related genes. However, a decrease in the expression of IFN-α2 was observed. Moreover, the presence of an miR-216a-3p inhibitor and si-IFN-α2 increased the expression of TLR pathway-related genes and cell apoptosis, whereas cell proliferation was significantly decreased in the cardiomyocytes. Conclusion: We found that in T2DM, miR-216a-3p inhibited the proliferation and enhanced the apoptosis of cardiomyocytes and generated an inflammatory response through activation of the TLR pathway and targeting of IFN-α2.
Collapse
Affiliation(s)
- Xiaomeng Liu
- The 2nd Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital, Linyi, China
| | - Yusong Zhang
- Imaging Center, Linyi People's Hospital, Linyi, China
| | - Hongwei Liang
- Department of Health Care, Linyi People's Hospital, Linyi, China
| | - Yanchao Xu
- The 2nd Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital, Linyi, China
- *Correspondence: Yanchao Xu
| |
Collapse
|
7
|
Effect of Compound Laser Acupuncture-Moxibustion on Blood Glucose, Fasting Insulin and Blood Lipids Levels in Type 2 Diabetic Rats. Chin J Integr Med 2019; 26:33-38. [PMID: 31776963 DOI: 10.1007/s11655-019-3084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of compound laser acupuncture-moxibustion on blood glucose, fasting insulin and blood lipids levels in type 2 diabetes mellitus (T2DM) rats. METHODS Forty male Wistar rats were randomly divided into 4 groups, including the normal group, model control group, laser group and sham laser group (n=10 per group). The rats in the normal group were fed with a standard diet. Rats in other groups were fed with a high-sugar and high-fat diet for 4 weeks, then intraperitoneally injected with 1% streptozotocin to induce T2DM model. The laser group was irradiated by 10.6 µm and 650 nm compound laser on bilateral Pishu (BL 20), Shenshu (BL 23) and Sanyinjiao (SP 6) for 5 min, 6 times a week for 5 weeks. The sham laser group received the same treatment as the laser group, but without laser output. The model control group and normal group were not treated. Blood glucose levels were measured before and after 1, 2, 3, 4 and 5 weeks of treatment. The serum levels of fasting insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed after the last treatment. RESULTS The blood glucose levels in the model control group increased during the 5 weeks of treatment compared with the normal group (P<0.05), while those in the laser group were significantly lower than the model control group after weekly treatment (P<0.01 or P<0.05). After 1, 2 and 3 weeks of treatment, the blood glucose levels in the laser group decreased obviously compared with the sham laser group (P<0.01 or P<0.05). Compared with the normal group, the levels of fasting insulin, TC and LDL in the model control group notably increased (P<0.01 or P<0.05), while their levels in the laser group were significantly lower than the model control group after 5 weeks of treatment (P<0.05 or P<0.01). However, no statistically significant differences were observed in TG or HDL levels among the 4 groups (P>0.05). CONCLUSION The compound laser acupuncture-moxibustion of 10.6 µm and 650 nm had positive effects on the regulation of hyperglycemia and insulin resistance in T2DM rats, which may be a potential treatment for T2DM, and also provide an alternative to the traditional acupuncture and moxibustion therapy.
Collapse
|
8
|
Li Z, Lan D, Zhang H, Zhang H, Chen X, Sun J. Electroacupuncture Mitigates Skeletal Muscular Lipid Metabolism Disorder Related to High-Fat-Diet Induced Insulin Resistance through the AMPK/ACC Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7925842. [PMID: 30524482 PMCID: PMC6247435 DOI: 10.1155/2018/7925842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The aim of this work is to investigate the effect of electroacupuncture (EA) on insulin sensitivity in high-fat diet (HFD) induced insulin resistance (IR) rats and to evaluate expression of AMPK/ACC signaling components. Thirty-two male Sprague-Dawley rats were randomized into control group, HFD group, HFD+Pi (oral gavage of pioglitazone) group, and HFD+EA group. Acupuncture was subcutaneously applied to Zusanli (ST40) and Sanyinjiao (SP6). For Zusanli (ST40) and Sanyinjiao (SP6), needles were connected to an electroacupuncture (EA) apparatus. Fasting plasma glucose was measured by glucose oxidase method. Plasma fasting insulin (FINS) and adiponectin (ADP) were determined by ELISA. Triglyceride (TG) and cholesterol (TC) were determined by Gpo-pap. Proteins of adiponectin receptor 1 (adipoR1), AMP-activated Protein Kinase (AMPK), and acetyl-CoA carboxylase (ACC) were determined by Western blot, respectively. Compared with the control group, HFD group exhibits increased levels of FPG, FINS, and homeostatic model assessment of insulin resistance (HOMA-IR) and decreased level of ADP and insulin sensitivity index (ISI). These changes were reversed by both EA and pioglitazone. Proteins of adipoR1 and AMPK were decreased, while ACC were increased in HFD group compared to control group. Proteins of these molecules were restored back to normal levels upon EA and pioglitazone. EA can improve the insulin sensitivity of insulin resistance rats; the positive regulation of the AMPK/ACC pathway in the skeletal muscle may be a possible mechanism of EA in the treatment of IR.
Collapse
Affiliation(s)
- Zhixing Li
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Danchun Lan
- Department of Acu-Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, Foshan 528000, China
| | - Haihua Zhang
- Massage Department, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Hongtao Zhang
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaozhuan Chen
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jian Sun
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|