1
|
Liu L, Tang Z, Zeng Q, Qi W, Zhou Z, Chen D, Cai D, Chen Y, Sun S, Gong S, He B, Yu S, Zhao L. Transcriptomic Insights into Different Stimulation Intensity of Electroacupuncture in Treating COPD in Rat Models. J Inflamm Res 2024; 17:2873-2887. [PMID: 38741612 PMCID: PMC11090121 DOI: 10.2147/jir.s458580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Background Electroacupuncture (EA), with varying stimulation intensities, has demonstrated therapeutic potentials in both animal and clinical studies for the treatment of chronic obstructive pulmonary disease (COPD). However, a comprehensive investigation of the intensity-related effects, particularly 1mA and 3mA of EA, and the underlying mechanisms remains lacking. Methods A COPD rat model was established by prolonged exposure to cigarette smoke and intermittent intratracheal instillation of lipopolysaccharide. EA treatment was administered at acupoints BL13 (Feishu) and ST36 (Zusanli), 20 minutes daily for 2 weeks, with intensities of 1mA and 3mA. EA effectiveness was evaluated by pulmonary function, histopathological change, serum level of inflammatory cytokines, and level of oxidative stress markers in serum and lung tissues. Transcriptome profiling and weighted gene co-expression network analysis (WGCNA) were performed to reveal gene expression patterns and identify hub genes. Real-time quantitative PCR (RT-qPCR) and Western blot (WB) were performed to detect the mRNA and protein expression levels, respectively. Results EA at both 1mA and 3mA exerted differing therapeutic effects by improving lung function and reducing inflammation and oxidative stress in COPD rats. Transcriptome analysis revealed distinct expression patterns between the two groups, functionally corresponding to shared and intensity-specific (1mA and 3mA) enriched pathways. Eight candidate genes were identified, including Aqp9, Trem1, Mrc1, and Gpnmb that were downregulated by EA and upregulated in COPD. Notably, Msr1 and Slc26a4 exclusively downregulated in EA-1mA, while Pde3a and Bmp6 upregulated solely in EA-3mA. WGCNA constructed 5 key modules and elucidated the module-trait relationship, with the aforementioned 8 genes being highlighted. Additionally, their mRNA and protein levels were validated by RT-qPCR and WB. Conclusion Our results demonstrated that 1mA and 3mA intensities induce distinct gene expression patterns at the transcriptional level, associated with shared and 1mA vs 3mA-specific enriched pathways. Genes Mrc1, Gpnmb, Trem1, and Aqp9 emerge as promising targets, and further studies are needed to elucidate their functional consequences in COPD.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Zili Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Qian Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Wenchuan Qi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Ziyang Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Daohong Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Dingjun Cai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu City, Sichuan Province, China
| | - Ying Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Shiqi Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Siyao Gong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Bin He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
| | - Shuguang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu City, Sichuan Province, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People’s Republic of China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu City, Sichuan Province, China
| |
Collapse
|
2
|
Shi F, Cao J, Zhou D, Wang X, Yang H, Liu T, Chen Z, Zeng J, Du S, Yang L, Jia R, Zhang S, Zhang M, Guo Y, Lin X. Revealing the clinical effect and biological mechanism of acupuncture in COPD: A review. Biomed Pharmacother 2024; 170:115926. [PMID: 38035864 DOI: 10.1016/j.biopha.2023.115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.
Collapse
Affiliation(s)
- Fangyuan Shi
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo Jia
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Mingxing Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaowei Lin
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Jiang LH, Li PJ, Wang YQ, Jiang ML, Han XY, Bao YD, Deng XL, Wu WB, Liu XD. Anti-inflammatory effects of acupuncture in the treatment of chronic obstructive pulmonary disease. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:518-527. [PMID: 37989696 DOI: 10.1016/j.joim.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Numerous randomised controlled trials have suggested the positive effects of acupuncture on chronic obstructive pulmonary disease (COPD). However, the underlying therapeutic mechanisms of acupuncture for COPD have not been clearly summarized yet. Inflammation is central to the development of COPD. In this review, we elucidate the effects and underlying mechanisms of acupuncture from an anti-inflammatory perspective based on animal studies. Cigarette smoke combined with lipopolysaccharide is often used to establish animal models of COPD. Electroacupuncture can be an effective intervention to improve inflammation in COPD, and Feishu (BL13) and Zusanli (ST36) can be used as basic acupoints in COPD animal models. Different acupuncture types can regulate different types of inflammatory cytokines; meanwhile, different acupuncture types and acupoint options have similar effects on modulating the level of inflammatory cytokines. In particular, acupuncture exerts anti-inflammatory effects by inhibiting the release of inflammatory cells, inflammasomes and inflammatory cytokines. The main underlying mechanism through which acupuncture improves inflammation in COPD is the modulation of relevant signalling pathways: nuclear factor-κB (NF-κB) (e.g., myeloid differentiation primary response 88/NF-κB, toll-like receptor-4/NF-κB, silent information regulator transcript-1/NF-κB), mitogen-activated protein kinase signalling pathways (extracellular signal-regulated kinase 1/2, p38 and c-Jun NH2-terminal kinase), cholinergic anti-inflammatory pathway, and dopamine D2 receptor pathway. The current synthesis will be beneficial for further research on the effect of acupuncture on COPD inflammation. Please cite this article as: Jiang LH, Li PJ, Wang YQ, Jiang ML, Han XY, Bao YD, Deng XL, Wu WB, Liu XD. Anti-inflammatory effects of acupuncture in the treatment of chronic obstructive pulmonary disease. J Integr Med. 2023; 21(6): 518-527.
Collapse
Affiliation(s)
- Lin-Hong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei-Jun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Qi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei-Ling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Yu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yi-Die Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Liao Deng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Bing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Dan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Effectiveness and Safety of Electroacupuncture for Depression: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4414113. [PMID: 36034955 PMCID: PMC9410808 DOI: 10.1155/2022/4414113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Purpose. The purpose of this systematic review and meta-analysis was to comprehensively evaluate the efficacy and safety of electroacupuncture as an effective adjunctive therapy for patients with depression. Methods. Randomized controlled trials (RCTs) about the treatment of depression by electroacupuncture therapy from inception to September 2021 were searched and collected in eight databases. HAMD, SDS, and Adverse Reactions were used as outcome indicators. The quality of relevant articles was evaluated using the Cochrane Collaboration’s risk of bias tool. The quality of evidence for each outcome was assessed through the Grading of Recommendations Assessment and the Development and Evaluation approach. Stata 15.0 software was used for data analysis. Results. A total of 16 depression-related RCTs were included in this meta-analysis. For the main outcome, electroacupuncture significantly reduced HAMD scores (I2:0.0%, SMD: −2.28% (95% CI−3.16 to −1.39)), and the quality of evidence was moderate. The improvement effect of electroacupuncture plus antidepressants was better than that of western drugs in patients with depression (I2:26.2%, SMD: −1.18% (95% CI−1.42 to −0.94)), and the quality of evidence was moderate. Electroacupuncture significantly reduced HAMD scores without significant heterogeneity (I2:0.0%, SMD: −3.76% (95%CI−5.78−1.73)). Studies with very low quality of evidence found that electroacupuncture was as effective as antidepressants in reducing SDS scores (I2:36.4%, WMD: −1.15% (95%CI−2.93–0.63)), and electroacupuncture was found to be more effective than sham electroacupuncture stimulation as well. Moderate quality evidence showed no statistical difference between electroacupuncture plus antidepressants/electroacupuncture and antidepressants (I2:0%, RR:1.05% (95%CI 0.73 to 1.53)). Conclusions. Our meta-analysis shows that electroacupuncture reduces HAMD scores. It is suggested to use electroacupuncture plus antidepressants to improve the curative effect and effectively reduce drug side effects.
Collapse
|
5
|
Liu X, Fan T, Guan J, Luo A, Yu Y, Chen D, Mao B, Jiang H, Liu W. Dopamine relieves inflammatory responses through the D2 receptor after electroacupuncture at ST36 in a mouse model of chronic obstructive pulmonary disease. Acupunct Med 2022:9645284221107684. [PMID: 35775581 DOI: 10.1177/09645284221107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To detect the role of dopamine in the anti-inflammatory effect of electroacupuncture (EA) at ST36 in a mouse model of chronic obstructive pulmonary disease (COPD). METHODS Twenty-eight male BALB/c mice were randomly divided into the control group, model group, sham EA (sham) group or ST36 EA (ST36) group in a 1:1:1:1 ratio (n = 7 each). The COPD mouse model was established through cigarette smoke (CS) exposure for 12 weeks. During the last 2 weeks, EA was applied at a sham point location or ST36 before CS exposure. Lung function, histopathological changes, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), inflammatory cytokines in BALF, plasma, lung tissue homogenate (LTH), and plasma dopamine levels were detected in the different groups. Furthermore, the role of different dopamine receptors was explored through intraperitoneal injections of non-specific dopamine receptor antagonist chlorpromazine, specific dopamine D1 receptor antagonist SCH 23390 and specific dopamine D2 receptor antagonist eticlopride hydrochloride prior to ST36 EA and CS exposure. RESULTS EA at ST36 improved lung function, alleviated lung and systemic inflammatory responses by reducing inflammatory cells and cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-8 and IL-1β in BALF, plasma and lung tissue in this COPD mouse model. Plasma dopamine was greatly increased after EA at ST36, negatively correlated with lung histological lesions and inflammatory cytokine levels, and positively correlated with mice body weight and lung function indicators. Chlorpromazine and eticlopride hydrochloride inhibited the anti-inflammatory effect of EA at ST36, while SCH 23390 showed no neutralizing effect. CONCLUSION EA at ST36 could alleviate inflammation in this mouse model of COPD through the dopamine D2 receptor pathway.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Fan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jinshuai Guan
- Department of Medicine-Neurology, Meishan Cardiovascular and Cerebrovascular Disease Hospital, Meishan, China
| | - Ai Luo
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Yu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Daohong Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Clinical significance of serum HMGB1 in COPD and correlation with severity of airflow restriction and immune function. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: To explore the serum HMGB1 levels in patients with smoking-induced chronic obstructive pulmonary disease (COPD) and the correlations with airflow restriction and immune function.
Methods: A total of 136 COPD patients were divided into mild, moderate and severe + extremely severe groups. Thirty-five healthy subjects were selected as control group. Serum HMGB1 levels were measured by ELISA, and the correlations with pulmonary and immune function indices were analyzed. Receiver operating characteristic (ROC) curve was plotted.
Results: PaO2, eosinophil count, FEV1/FVC, FEV1% pred, and IgA, IgM, IgG levels of COPD patients were lower than those of control group, and decreased with airflow restriction aggravation. PaCO2, leukocyte count, neutrophil percentage, modified British Medical Research Council (mMRC) scale and COPD Assessment Test (CAT) scores, D-Dimer (D-D), PCT, CRP and HMGB1 levels, myeloid dendritic cell (mDC) and plasmacytoid dendritic cell (pDC) counts, and mDCs/pDCs of COPD patients exceeded those of control group, and increased with airflow restriction aggravation (P<0.05). HMGB1 levels of COPD patients were negatively correlated with FEV1/FVC, FEV1% pred, IgA, IgM and IgG levels and positively correlated with mDC count, pDC count and mDCs/pDCs (P<0.0001). The area under ROC curve was 0.883, the optimal cutoff value was 3.63 ng/mL, and sensitivity and specificity were 86.7% and 85.9%, respectively.
Conclusions: Serum HMGB1 level in patients with smoking-induced COPD rises with airflow restriction aggravation and has significant correlations with the decline of pulmonary and immune functions, with high predictive value for COPD. HMGB1 is a potential biomarker for evaluating COPD progression.
Collapse
|
7
|
Liu Q, Duan H, Lian A, Zhuang M, Zhao X, Liu X. Rehabilitation Effects of Acupuncture on the Diaphragm Dysfunction in Chronic Obstructive Pulmonary Disease: A Systematic Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2023-2037. [PMID: 34262271 PMCID: PMC8275099 DOI: 10.2147/copd.s313439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Diaphragm dysfunction is a significant extrapulmonary effect in chronic obstructive pulmonary disease (COPD), which is manifested by changes in diaphragm structure and reduced diaphragm strength. Acupuncture is a traditional rehabilitation technique in China, which has been used in rehabilitation for COPD. But whether acupuncture can improve the diaphragm function of COPD patients remains to be verified. Objective The objective of this study was to evaluate the rehabilitation effects of acupuncture on diaphragm dysfunction in patients with COPD. Methods The authors retrieved in CNKI, VIP, SinoMed, PubMed, Ebsco, Web of Science, from inception to November 2020, for relevant randomized control trials. Two researchers independently screened the articles and extracted the data. The quality of the included studies was evaluated by Physiotherapy Evidence Database scale. The primary outcome measures were maximal inspiratory pressure and the scale for accessory respiratory muscle mobilization, the secondary outcome measures were pulmonary function-related indicators and arterial blood gas indicators. Results Nine articles were finally obtained. Seven studies added acupuncture to standard treatment for patients with diaphragm dysfunction in COPD and found statistically significant changes in the maximum inspiratory pressure and the scale for accessory respiratory muscle mobilization. Two studies have proved that use acupuncture combined with other Traditional Chinese Medicine methods in the rehabilitation for COPD can effectively improve the diaphragm strength and diaphragmatic motor performance. Seven studies showed that acupuncture has obvious improvement in pulmonary ventilation function. Seven studies reported significant differences in arterial blood gas pre- to post-intervention. Conclusion This systematic review found that acupuncture can effectively enhance the diaphragm strength, relieve respiratory muscle fatigue, it can also play a promoting role in improving lung function, hypoxia, and carbon dioxide retention, as well as preventing and alleviating respiratory failure. The generalizability of these results is limited by the design of the included studies.
Collapse
Affiliation(s)
- Qinxin Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hongxia Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Anbei Lian
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Min Zhuang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xianli Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Engineering Research Center of Intelligent Rehabilitation of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Zhang XF, Xiang SY, Lu J, Li Y, Zhao SJ, Jiang CW, Liu XG, Liu ZB, Zhang J. Electroacupuncture inhibits IL-17/IL-17R and post-receptor MAPK signaling pathways in a rat model of chronic obstructive pulmonary disease. Acupunct Med 2021; 39:663-672. [PMID: 33715422 DOI: 10.1177/0964528421996720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Interleukin (IL)-17, as a T-helper 17 cell (Th17) cytokine, plays a key role in chronic obstructive pulmonary disease (COPD) pathophysiology including chronic inflammation and airway obstruction, which lead to decreased pulmonary function. The aim of this study was to investigate the effect of acupuncture on IL-17, its receptor (IL-17R) and the mitogen-activated protein kinase (MAPK) signaling pathway, in a rat model of COPD. METHODS The COPD model was induced in Sprague Dawley rats by exposure to cigarette smoke for 12 weeks. The model rats were treated with electroacupuncture (EA) at BL13 and ST36. The lung function and histology of the rats were observed. IL-17, tumor necrosis factor (TNF)-α, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and in plasma. The leukocytes and macrophages in the BALF were counted. The expression levels of IL-17R were assayed in lung tissue by real-time polymerase chain reaction (PCR), western blotting, and immunohistochemistry. MAPK signaling pathway molecules including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK)1/2 and p38, and their phosphorylated forms, were observed in the lung by western blotting. RESULTS Compared with the control group rats, lung function decreased and there was a severe inflammatory infiltration of the pulmonary parenchyma in the COPD rats. EA effectively improved lung function and alleviated the inflammatory infiltration in the lungs of COPD rats. EA also reversed the elevated total leukocyte and macrophage counts, the high levels of IL-17 and TNF-α, and the low IL-10 content in COPD rats. Meanwhile, EA downregulated the increased mRNA and protein expression of IL-17R, and significantly inhibited the elevated levels of phosphorylated JNK, ERK1/2, and p38 in the lungs of COPD rats. CONCLUSION Our results suggest that the protective effects of acupuncture therapy on the lungs of COPD rats are likely related to inhibition of IL-17/IL-17R and the post-receptor MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin-Fang Zhang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shui-Ying Xiang
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Lu
- Department of Rehabilitation & Health Care, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Yin Li
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Shu-Jun Zhao
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chuan-Wei Jiang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Guo Liu
- Department of Histology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-Bing Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, China
| |
Collapse
|
9
|
Dai J, Ji B, Zhao G, Lu Y, Liu Y, Mou Q, Sakurai R, Xie Y, Zhang Q, Xu S, Rehan VK. Developmental Timing Determines the Protective Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Offspring Lung Phenotype. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8030972. [PMID: 32190681 PMCID: PMC7064824 DOI: 10.1155/2020/8030972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Introduction. Environmental exposure of the developing offspring to cigarette smoke or nicotine is an important predisposing factor for many chronic respiratory conditions, such as asthma, emphysema, pulmonary fibrosis, and so forth, in the exposed offspring. Studies showed that electroacupuncture (EA) applied to maternal "Zusanli" (ST36) acupoints during pregnancy and lactation protects against perinatal nicotine exposure- (PNE-) induced lung damage. However, the most effective time period, that is, prenatal vs. postnatal, to attain this effect has not been determined. OBJECTIVE To determine the most effective developmental timing of EA's protective effect against PNE-induced lung phenotype in the exposed offspring. METHODS Pregnant rats were given (1) saline ("S" group); (2) nicotine ("N" group); (3) nicotine + EA, exclusively prenatally ("Pre-EA" group); (4) nicotine + EA, exclusively postnatally ("Post-EA," group); and (5) nicotine + EA, administered both prenatally and postnatally ("Pre- and Post-EA" group). Nicotine was injected once daily (1 mg/kg, 100 μl) and EA was administered to bilateral ST36 acupoints once daily during the specified time-periods. At the end of the experimental periods, key hypothalamic pituitary adrenal (HPA) axis markers in pups and dams, and lung function, morphometry, and the central molecular markers of lung development in the offspring were determined. RESULTS After nicotine exposure, alveolar mean linear intercept (MLI) increased, but mean alveolar number (MAN) decreased and lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPAR. CONCLUSIONS Maternal EA applied to ST36 acupoints during both pre- and postnatal periods preserves offspring lung structure and function despite perinatal exposure to nicotine. EA applied during the "prenatal period" affords only limited benefits, whereas EA applied during the "postnatal period" is ineffective, suggesting that the EA's effects in modulating PNE-induced lung phenotype are limited to specific time-periods during lung development.
Collapse
Affiliation(s)
- Jian Dai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guozhen Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiujie Mou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| | - Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Virender K. Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| |
Collapse
|