1
|
Cheng J, Clayton JS, Acemel RD, Zheng Y, Taylor RL, Keleş S, Franke M, Boackle SA, Harley JB, Quail E, Gómez-Skarmeta JL, Ulgiati D. Regulatory Architecture of the RCA Gene Cluster Captures an Intragenic TAD Boundary, CTCF-Mediated Chromatin Looping and a Long-Range Intergenic Enhancer. Front Immunol 2022; 13:901747. [PMID: 35769482 PMCID: PMC9235356 DOI: 10.3389/fimmu.2022.901747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.
Collapse
Affiliation(s)
- Jessica Cheng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Rafael D. Acemel
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Martin Franke
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Susan A. Boackle
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,US Department of Veterans Affairs Medical Centre, US Department of Veterans Affairs, Cincinnati, OH, United States
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,*Correspondence: Daniela Ulgiati,
| |
Collapse
|
2
|
Ng HL, Taylor RL, Cheng J, Abraham LJ, Quail E, Cruickshank MN, Ulgiati D. Notch signaling induces a transcriptionally permissive state at the Complement C3d Receptor 2 (CR2) promoter in a pre-B cell model. Mol Immunol 2020; 128:150-164. [PMID: 33129017 DOI: 10.1016/j.molimm.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
During mammalian lymphoid development, Notch signaling is necessary at multiple stages of T lymphopoiesis, including lineage commitment, and later stages of T cell effector differentiation. In contrast, outside of a defined role in the development of splenic marginal zone B cells, there is conflicting evidence regarding whether Notch signaling plays functional roles in other B cell sub-populations. Complement receptor 2 (CR2) modulates BCR-signaling and is tightly regulated throughout differentiation. During B lymphopoiesis, CR2 is detected on immature and mature B cells with high surface expression on marginal zone B cells. Here, we have explored the possibility that Notch regulates human CR2 transcriptional activity using in vitro models including a co-culture system, co-transfection gene reporters and chromatin accessibility assays. We provide evidence that Notch signaling regulates CR2 promoter activity in a mature B cell line, as well as the induction of endogenous CR2 mRNA in a non-expressing pre-B cell line. The dynamics of endogenous gene activation suggests additional unidentified factors are required to mediate surface CR2 expression on immature and mature B lineage cells.
Collapse
Affiliation(s)
- Han Leng Ng
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia
| | - Rhonda L Taylor
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia
| | - Jessica Cheng
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia
| | - Lawrence J Abraham
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia
| | - Elizabeth Quail
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia; School of Molecular Sciences, Faculty of Science, The University of Western Australia, Australia
| | - Mark N Cruickshank
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia
| | - Daniela Ulgiati
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Australia.
| |
Collapse
|
3
|
Sun HS, Yang QR, Bai YY, Hu NW, Liu DX, Qin CY. Gene testing for osteonecrosis of the femoral head in systemic lupus erythematosus using targeted next-generation sequencing: A pilot study. World J Clin Cases 2020; 8:2530-2541. [PMID: 32607330 PMCID: PMC7322418 DOI: 10.12998/wjcc.v8.i12.2530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous publications indicated that genetic predisposition might play important roles in the onset of osteonecrosis of the femoral head (ONFH) in systemic lupus erythematosus (SLE). Some gene loci such as complement C3d receptor 2 (CR2), nitric oxide synthase 3 (NOS3), collagen type II alpha 1 chain (COL2A1), protein tyrosine phosphatase non-receptor type 22 (PTPN22), and transient receptor potential cation channel subfamily V member 4 (TRPV4) were reported to be involved in this process.
AIM To investigate whether the risk of ONFH in SLE is associated with single nucleotide variations (SNVs) in these five genes.
METHODS SNVs in the CR2, NOS3, COL2A1, PTPN22, and TRPV4 genes were examined by using FastTarget and Illumina Miseq sequencing technologies in 49 cases of SLE with ONFH. Burrows–wheeler aligner was used to align the sequencing reads to hg19, and GATK and Varscan programs were used to perform SNV calling. PolyPhen-2, SIFT, and MutationTaster were used to assess the functional effects of non-synonymous SNVs.
RESULTS Six of the 49 patients were confirmed to have low frequency SNVs, including one patient with SNVs in NOS3 (exon 6: c.814G>A: p.E272K and exon 7: c.814G>A: p.E272K.), four in COL2A1 (rs41263847: exon 29: c.1913C>T: p.T638I, exon 28: c.1706C>T: p.T569I, and rs371445823: exon 8: c.580G>A: p.A194T, exon 7: c.373G>A: p.A125T), and one in CR2 (rs45573035: exon 2: c.200C>G: p.T67S).
CONCLUSION The onset of ONFH in SLE might be associated with the identified SNVs in NOS3, COL2A1, and CR2.
Collapse
Affiliation(s)
- Hong-Sheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Qing-Rui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Yan-Yan Bai
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Nai-Wen Hu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Dong-Xia Liu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Cheng-Yong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
4
|
Anaya JM, Leon KJ, Rojas M, Rodriguez Y, Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Ramirez-Santana C. Progress towards precision medicine for lupus: the role of genetic biomarkers. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1448266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Kelly J. Leon
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Ramirez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Celhar T, Fairhurst AM. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology (Oxford) 2017; 56:i88-i99. [PMID: 28013204 PMCID: PMC5410990 DOI: 10.1093/rheumatology/kew400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/26/2022] Open
Abstract
Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, A*STAR, Singapore, Republic of Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, A*STAR, Singapore, Republic of Singapore.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The field of systemic lupus erythematosus (SLE) genetics has been advancing rapidly in recent years. This review will summarize recent advances in SLE genetics. RECENT FINDINGS Genome-wide-association and follow-up studies have greatly expanded the list of associated polymorphisms, and much current work strives to integrate these polymorphisms into immune system biology and the pathogenic mediators involved in the disease. This review covers some current areas of interest, including genetic studies in non-European SLE patient populations, studies of pathogenic immune system subphenotypes such as type I interferon and autoantibodies, and a rapidly growing body of work investigating the functional consequences of the genetic polymorphisms associated with SLE. SUMMARY These studies provide a fascinating window into human SLE disease biology. As the work proceeds from genetic association signal to altered human biology, we move closer to tailoring interventions based upon an individual's genetic substrate.
Collapse
|
7
|
Association of Complement Receptor 2 Gene Polymorphisms with Susceptibility to Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9208035. [PMID: 27446959 PMCID: PMC4944048 DOI: 10.1155/2016/9208035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a complex and multifactorial disease that is influenced by a number of genetic factors in addition to environmental factors. Some autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are associated with the development of ONFH. Complement receptor type 2 (CR2) is membrane glycoprotein which binds C3 degradation products generated during complement activation. CR2 has many important functions in normal immunity and is assumed to play a role in the development of autoimmune disease. We investigated whether CR2 gene polymorphisms are associated with risk of ONFH in SLE patients. Eight polymorphisms in the CR2 gene were genotyped using TaqMan™ assays in 150 SLE patients and 50 ONFH in SLE patients (SLE_ONFH). The association analysis of genotyped SNPs and haplotypes was performed with ONFH. It was found that three SNPs, rs3813946 in 5′-UTR (untranslated region), rs311306 in intron 1, and rs17615 in exon 10 (nonsynonymous SNP; G/A, Ser639Asn) of the CR2 gene, were associated with an increased risk of ONFH under recessive model (P values; 0.004~0.016). Haplotypes were also associated with an increased risk (OR; 3.73~) of ONFH in SLE patients. These findings may provide evidences that CR2 contributes to human ONFH susceptibility in Korean SLE patients.
Collapse
|