1
|
Cai G, Jayaraman D. Spontaneous, simultaneous bilateral osteonecrosis of the femoral heads in a patient with sideroblastic anaemia with B-cell immunodeficiency, periodic fever and developmental delay syndrome. BMJ Case Rep 2023; 16:e254175. [PMID: 37130647 PMCID: PMC10163426 DOI: 10.1136/bcr-2022-254175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Sideroblastic anaemia with B-cell immunodeficiency, periodic fever and developmental delay is a recently described, rare syndrome characterised by numerous manifestations underpinned by mutations in transfer RNA nucleotidyltransferase. The pathogenesis arises from mitochondrial dysfunction, with impaired intracellular stress response, deficient metabolism and cellular and systemic inflammation. This yields multiorgan dysfunction and early death in many patients with survivors suffering significant disability and morbidity. New cases, often youths, are still being described, expanding the horizon of recognisable phenotypes. We present a mature patient with spontaneous bilateral hip osteonecrosis that likely arises from the impaired RNA quality control and inflammation caused by this syndrome.
Collapse
|
2
|
Li Y, Deng M, Han T, Mo W, Mao H. Thalidomide as an Effective Treatment in Sideroblastic Anemia, Immunodeficiency, Periodic Fevers, and Developmental Delay (SIFD). J Clin Immunol 2023; 43:780-793. [PMID: 36729249 PMCID: PMC9893968 DOI: 10.1007/s10875-023-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Sideroblastic anemia, immunodeficiency, periodic fevers, and developmental delay (SIFD) is an autosomal recessive syndrome caused by biallelic loss-of-function variant of tRNA nucleotidyl transferase 1 (TRNT1). Efficacious methods to treat SIFD are lacking. We identified two novel mutations in TRNT1 and an efficacious and novel therapy for SIFD. METHODS We retrospectively summarized the clinical records of two patients with SIFD from different families and reviewed all published cases of SIFD. RESULTS Both patients had periodic fever, developmental delay, rash, microcytic anemia, and B cell lymphopenia with infections. Whole-exome sequencing of patient 1 identified a previously unreported homozygous mutation of TRNT1 (c.706G > A/p.Glu236Lys). He received intravenous immunoglobulin (IVIG) replacement and antibiotics, but died at 1 year of age. Gene testing in patient 2 revealed compound heterozygous mutations (c.907C > G/p.Gln303Glu and c.88A > G/p.Met30Val) in TRNT1, the former of which is a novel mutation. Periodic fever was controlled in the first month after adalimumab therapy and IVIG replacement, but recurred in the second month. Adalimumab was discontinued and replaced with thalidomide, which controlled the periodic fever and normalized inflammatory markers effectively. A retrospective analysis of reported cases revealed 69 patients with SIFD carrying 46 mutations. The male: female ratio was 1: 1, and the mean age of onset was 3.0 months. The most common clinical manifestations in patients with SIFD were microcytic anemia (82.6%), hypogammaglobulinemia/B cell lymphopenia (75.4%), periodic fever (66.7%), and developmental delay (60.0%). In addition to the typical tetralogy, SIFD features several heterogeneous symptoms involving multiple systems. Corticosteroids, immunosuppressants, and anakinra have low efficacy, whereas etanercept suppressed fever and improved anemia in reports. Bone-marrow transplantation can be used to treat severe SIFD, but carries a high risk. In total, 28.2% (20/71) of reported patients died, mainly because of multi-organ failure. Biallelic mutations located in exon1-intron5 lead to more severe phenotypes and higher mortality. Furthermore, 15.5% (11/71) patients survived to adulthood. The symptoms could be resolved spontaneously in five patients. CONCLUSIONS Thalidomide can control the inflammation of SIFD and represents a new treatment for SIFD.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Mengyue Deng
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Tongxin Han
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Wenxiu Mo
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Huawei Mao
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China.
| |
Collapse
|
3
|
Odom J, Amin H, Gijavanekar C, Elsea SH, Kralik S, Chinen J, Lin Y, Yates AMM, Mizerik E, Potocki L, Scaglia F. A phenotypic expansion of TRNT1 associated sideroblastic anemia with immunodeficiency, fevers, and developmental delay. Am J Med Genet A 2021; 188:259-268. [PMID: 34510712 DOI: 10.1002/ajmg.a.62482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD; MIM #616084) is an autosomal recessive disorder of mitochondrial and cytosolic tRNA processing caused by pathogenic, biallelic variants in TRNT1. Other features of this disorder include central nervous system, renal, cardiac, ophthalmological features, and sensorineural hearing impairment. SIFD was first described in 2013 and to date, it has been reported in 46 patients. Herein, we review the literature and describe two siblings with SIFD and note the novel phenotype of hypoglycemia in the context of growth hormone (GH) deficiency. GH deficiency without hypoglycemia has previously been reported in three patients with SIFD, but GH deficiency had not been firmly ascribed to SIFD. We propose to expand the phenotype to include GH deficiency, hypoglycemia, and previously unreported dysmorphic features. Furthermore, we highlight the intrafamilial variability of the disease by the discordance of our patients' clinical phenotypes and biochemical profiles measured by untargeted metabolomics analysis. Several metabolomic abnormalities were observed in both patients, and these may represent a potential biochemical signature for SIFD.
Collapse
Affiliation(s)
- John Odom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hitha Amin
- Texas Children's Hospital, Houston, Texas, USA.,Cortica Care, Irvine, California, USA.,Section of Child Neurology and Neurodevelopmental Disabilities, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Kralik
- Texas Children's Hospital, Houston, Texas, USA.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Chinen
- Division of Allergy and Immunology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuezhen Lin
- Division of Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Amber Meshell Mayfield Yates
- Texas Children's Hospital, Houston, Texas, USA.,Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
4
|
Frans G, Moens L, Schaballie H, Wuyts G, Liston A, Poesen K, Janssens A, Rice GI, Crow YJ, Meyts I, Bossuyt X. Homozygous N-terminal missense mutation in TRNT1 leads to progressive B-cell immunodeficiency in adulthood. J Allergy Clin Immunol 2016; 139:360-363.e6. [PMID: 27531075 DOI: 10.1016/j.jaci.2016.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Glynis Frans
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Heidi Schaballie
- Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Greet Wuyts
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, Autoimmune Genetics, KU Leuven and VIB, Leuven, Belgium
| | - Koen Poesen
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ann Janssens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Gillian I Rice
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Centre, Manchester, United Kingdom
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Centre, Manchester, United Kingdom; INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Paris, France; Paris Descartes, Sorbonne Paris Cité University, Institute Imagine, Paris, France
| | - Isabelle Meyts
- Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|