1
|
Lescoat A, Bertoldo E, Čolić J, Santiago T, Suliman YA, Emmel J, Conaghan PG, Allanore Y, Del Galdo F. Results from the international collaborative systematic literature review informing the 2023 EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 2024:ard-2024-226429. [PMID: 39515834 DOI: 10.1136/ard-2024-226429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The EULAR recommendations for the treatment of systemic sclerosis (SSc) were updated in 2017, informed by a systematic literature review (SLR) completed in 2014. OBJECTIVES The aim of this new SLR was to provide the most up-to-date literature to underpin contemporary EULAR recommendations for the management of SSc. METHODS 30 searches for 30 interventions (including several outcomes/clinical questions), and 1 dedicated search (with several interventions) for calcinosis were prioritised by the task force. Three types of questions were defined: type I questions, unchanged as compared with the previous recommendations; type II questions exploring interventions already mentioned in the previous recommendations but with new outcomes; type III questions for new interventions. RESULTS 14 490 abstracts were retrieved from the databases on 31 March 2022 and 2021 abstracts were retrieved on 11 October 2022. 483 new full texts were evaluated and 172 new articles were included for the first search and 9 for the second search. The majority of the questions covered by this SLR explored new interventions (40% of type III questions) or new outcomes (26% of type II questions). New interventions included targeted therapies such as abatacept, Janus kinase inhibitors or nintedanib, and updated questions incorporated the results from key game-changing randomised controlled trials including trials on tocilizumab, mycophenolate or rituximab in SSc-interstitial lung disease. CONCLUSIONS This SLR provides and summarises the highest level of evidence for the new EULAR recommendations for the treatment of SSc, providing an unprecedented comprehensive overview of recent knowledge on SSc treatments and participating in defining the future research agenda.
Collapse
Affiliation(s)
- Alain Lescoat
- IRSET, Rennes, Bretagne, France
- Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Eugenia Bertoldo
- Department of Medicine, Rheumatology Unit, Universita degli Studi di Verona, Verona, Italy
| | - Jelena Čolić
- Rheumatology, University of Belgrade Faculty of Medicine, Beograd, Serbia
| | | | - Yossra A Suliman
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University Faculty of Medicine, Assiut, Egypt
| | - Jenny Emmel
- Medical Education, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Yannick Allanore
- Department of Rheumatology A, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Francesco Del Galdo
- School of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- LTHT, NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
2
|
Del Galdo F, Lescoat A, Conaghan PG, Bertoldo E, Čolić J, Santiago T, Suliman YA, Matucci-Cerinic M, Gabrielli A, Distler O, Hoffmann-Vold AM, Castellví I, Balbir-Gurman A, Vonk M, Ananyeva L, Rednic S, Tarasova A, Ostojic P, Boyadzhieva V, El Aoufy K, Farrington S, Galetti I, Denton CP, Kowal-Bielecka O, Mueller-Ladner U, Allanore Y. EULAR recommendations for the treatment of systemic sclerosis: 2023 update. Ann Rheum Dis 2024:ard-2024-226430. [PMID: 39393843 DOI: 10.1136/ard-2024-226430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES To update the 2017 European Alliance of Associations for Rheumatology (EULAR) recommendations for treatment of systemic sclerosis (SSc), incorporating new evidence and therapies. METHODS An international task force was convened in line with EULAR standard operating procedures. A nominal group technique exercise was performed in two rounds to define questions underpinning a subsequent systematic literature review. The evidence derived was discussed and overarching principles, recommendations and future research agenda were iteratively developed with voting rounds. RESULTS The task force agreed on 22 recommendations covering 8 clinical/organ domains including Raynaud's phenomenon, digital ulcers, pulmonary arterial hypertension, scleroderma renal crisis, skin fibrosis, interstitial lung disease (ILD), gastrointestinal manifestations and arthritis. Most new recommendations are related to skin fibrosis and ILD. These included novel recommendations for the use of mycophenolate mofetil, nintedanib, rituximab and tocilizumab for the treatment of these crucial disease manifestations. The recommendations also included first-line and second-line interventions, providing increased utility for rheumatology practitioners. Important additions to the future research agenda included consideration of novel interventions for the management of vascular, musculoskeletal and gastrointestinal manifestations and calcinosis, as well as for the local management of digital ulcers. CONCLUSION These updated recommendations include the first set of synthetic and biological targeted therapies recommended for key fibrotic manifestations of SSc as well as first-line combination treatment for newly diagnosed pulmonary artery hypertension and prioritise a new research agenda for the coming years.
Collapse
Affiliation(s)
- Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, LIRMM, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, LIRMM, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Eugenia Bertoldo
- Department of Medicine, Rheumatology Unit, Universita degli Studi di Verona, Verona, Italy
| | - Jelena Čolić
- Rheumatology, University of Belgrade Faculty of Medicine, Beograd, Serbia
| | - Tânia Santiago
- Rheumatology Department, Centro Hospitalar e Universitario de Coimbra EPE, Coimbra, Portugal
| | - Yossra A Suliman
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University, Assiut, Egypt
- Rheumatology division, Ain Alkhaleej Hospital, Alain, Abu-Dhabi, UAE
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), and Inflammation, fibrosis and ageing initiative (INFLAGE), IRCCS San Raffaele Hospital, Milano, Italy
| | - Armando Gabrielli
- Scienze Cliniche e Molecolari, Università Politecnica delle Marche Facoltà di Medicina e Chirurgia, Ancona, Italy
| | - Oliver Distler
- University Hospital Zürich Center of Experimental Rheumatology, Zurich, Switzerland
| | | | - Ivan Castellví
- Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alexandra Balbir-Gurman
- B. Shine Department of Rheumatology, Department of Internal Medicine B, Rambam Health Care Campus, Haifa, Israel
| | - Madelon Vonk
- Department of Rheumatic diseases, Radboud Universiteit, Nijmegen, Netherlands
| | - Lidia Ananyeva
- Institute of Rheumatology, Russian Academy of Medical Sciences, Moskva, Russian Federation
| | - Simona Rednic
- Clinica Reumatologie, UMF Iuliu Haţieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Anna Tarasova
- Nasonova Research Institute of Rheumatology of RAMS, Moskva, Moskva, Russian Federation
| | - Pedrag Ostojic
- Institute of Rheumatology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | | | - Khadija El Aoufy
- Department of Clinical and Experimental Medicine, University of Florence Faculty of Medicine and Surgery, Firenze, Italy
| | - Sue Farrington
- Scleroderma and Raynaud's UK, London, UK
- Federation of European Scleroderma Associations, Milan, Italy
| | - Ilaria Galetti
- Federation of European Scleroderma Associations, Milan, Italy
| | | | - Otylia Kowal-Bielecka
- Department of Rheumatology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Ulf Mueller-Ladner
- Rheumatology and Clinical Immunology, University of Giessen, Giessen, Germany
| | - Yannick Allanore
- Department of Rheumatology, Université Paris Cité UFR de Médecine, Paris, France
| |
Collapse
|
3
|
Maron BA, Bortman G, De Marco T, Huston JH, Lang IM, Rosenkranz SH, Vachiéry JL, Tedford RJ. Pulmonary hypertension associated with left heart disease. Eur Respir J 2024; 64:2401344. [PMID: 39209478 PMCID: PMC11525340 DOI: 10.1183/13993003.01344-2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Left heart disease (LHD) is the most common cause of pulmonary hypertension (PH), which may be classified further as isolated post-capillary (ipcPH) or combined post- and pre-capillary PH (cpcPH). The 7th World Symposium on Pulmonary Hypertension PH-LHD task force reviewed newly reported randomised clinical trials and contemplated novel opportunities for improving outcome. Results from major randomised clinical trials reinforced prior recommendations against the use of pulmonary arterial hypertension therapy in PH-LHD outside of clinical trials, and suggested possible harm. Greater focus on phenotyping was viewed as one general strategy by which to ultimately improve clinical outcomes. This is potentially achievable by individualising ipcPH versus cpcPH diagnosis for patients with pulmonary arterial wedge pressure within a diagnostic grey zone (12-18 mmHg), and through a newly developed PH-LHD staging system. In this model, PH accompanies LHD across four stages (A=at risk, B=structural heart disease, C=symptomatic heart disease, D=advanced), with each stage characterised by progression in clinical characteristics, haemodynamics and potential therapeutic strategies. Along these lines, the task force proposed disaggregating PH-LHD to emphasise specific subtypes for which PH prevalence, pathophysiology and treatment are unique. This includes re-interpreting mitral and aortic valve stenosis through a contemporary lens, and focusing on PH within the hypertrophic cardiomyopathy and amyloid cardiomyopathy clinical spectra. Furthermore, appreciating LHD in the profile of PH patients with chronic lung disease and chronic thromboembolic pulmonary disease is essential. However, engaging LHD patients in clinical research more broadly is likely to require novel methodologies such as pragmatic trials and may benefit from next-generation analytics to interpret results.
Collapse
Affiliation(s)
- Bradley A Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- The University of Maryland - Institute for Health Computing, Bethesda, MD, USA
| | - Guillermo Bortman
- Transplant Unit, Heart Failure and PH Program, Sanatorio Trinidad Mitre and Sanatorio Trinidad Palermo, Buenos Aires, Argentina
| | - Teresa De Marco
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Irene M Lang
- Medical University of Vienna AUSTRIA Center of Cardiovascular Medicine, Vienna, Austria
| | - Stephan H Rosenkranz
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jean-Luc Vachiéry
- HUB (Hopital Universitaire de Bruxelles) Erasme, Free University of Brussels, Brussels, Belgium
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Chin KM, Gaine SP, Gerges C, Jing ZC, Mathai SC, Tamura Y, McLaughlin VV, Sitbon O. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J 2024; 64:2401325. [PMID: 39209476 PMCID: PMC11525349 DOI: 10.1183/13993003.01325-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension leads to significant impairment in haemodynamics, right heart function, exercise capacity, quality of life and survival. Current therapies have mechanisms of action involving signalling via one of four pathways: endothelin-1, nitric oxide, prostacyclin and bone morphogenetic protein/activin signalling. Efficacy has generally been greater with therapeutic combinations and with parenteral therapy compared with monotherapy or nonparenteral therapies, and maximal medical therapy is now four-drug therapy. Lung transplantation remains an option for selected patients with an inadequate response to therapies.
Collapse
Affiliation(s)
- Kelly M Chin
- Division of Pulmonary and Critical Care Medicine, UT Southwestern, Dallas, TX, USA
| | - Sean P Gaine
- Department of Respiratory Medicine, National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Christian Gerges
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuichi Tamura
- Pulmonary Hypertension Center, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Frankel Cardiovascular Center, Ann Arbor, MI, USA
| | - Olivier Sitbon
- Department of Respiratory Medicine, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
6
|
Dardi F, Boucly A, Benza R, Frantz R, Mercurio V, Olschewski H, Rådegran G, Rubin LJ, Hoeper MM. Risk stratification and treatment goals in pulmonary arterial hypertension. Eur Respir J 2024; 64:2401323. [PMID: 39209472 PMCID: PMC11525341 DOI: 10.1183/13993003.01323-2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Risk stratification has gained an increasing role in predicting outcomes and guiding the treatment of patients with pulmonary arterial hypertension (PAH). The most predictive prognostic factors are three noninvasive parameters (World Health Organization functional class, 6-min walk distance and natriuretic peptides) that are included in all currently validated risk stratification tools. However, suffering from limitations mainly related to reduced specificity of PAH severity, these variables may not always be adequate in isolation for guiding individualised treatment decisions. Moreover, with effective combination treatment regimens and emerging PAH therapies, markers associated with pulmonary vascular remodelling are expected to become of increasing relevance in guiding the treatment of patients with PAH. While reaching a low mortality risk, assessed with a validated risk tool, remains an important treatment goal, preliminary data suggest that invasive haemodynamics and cardiac imaging may add incremental value in guiding treatment decisions.
Collapse
Affiliation(s)
- Fabio Dardi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Athénaïs Boucly
- Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Raymond Benza
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Frantz
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Horst Olschewski
- Div. Pulmonology, Department Internal Medicine, Medical University of Graz, Graz, Austria
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University and The Haemodynamic Lab, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Lewis J Rubin
- University of California San Diego School of Medicine, San Diego, CA, USA
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School and the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
7
|
Budhram B, Weatherald J, Humbert M. Pulmonary Hypertension in Connective Tissue Diseases Other than Systemic Sclerosis. Semin Respir Crit Care Med 2024; 45:419-434. [PMID: 38499196 DOI: 10.1055/s-0044-1782217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Pulmonary hypertension (PH) is a known complication of certain connective tissue diseases (CTDs), with systemic sclerosis (SSc) being the most common in the Western world. However, PH in association with non-SSc CTD such as systemic lupus erythematous, mixed connective tissue disease, and primary Sjögren's syndrome constitutes a distinct subset of patients with inherently different epidemiologic profiles, pathophysiologic mechanisms, clinical features, therapeutic options, and prognostic implications. The purpose of this review is to inform a practical approach for clinicians evaluating patients with non-SSc CTD-associated PH.The development of PH in these patients involves a complex interplay between genetic factors, immune-mediated mechanisms, and endothelial cell dysfunction. Furthermore, the broad spectrum of CTD manifestations can contribute to the development of PH through various pathophysiologic mechanisms, including intrinsic pulmonary arteriolar vasculopathy (pulmonary arterial hypertension, Group 1 PH), left-heart disease (Group 2), chronic lung disease (Group 3), chronic pulmonary artery obstruction (Group 4), and unclear and/or multifactorial mechanisms (Group 5). The importance of diagnosing PH early in symptomatic patients with non-SSc CTD is highlighted, with a review of the relevant biomarkers, imaging, and diagnostic procedures required to establish a diagnosis.Therapeutic strategies for non-SSc PH associated with CTD are explored with an in-depth review of the medical, interventional, and surgical options available to these patients, emphasizing the CTD-specific considerations that guide treatment and aid in prognosis. By identifying gaps in the current literature, we offer insights into future research priorities that may prove valuable for patients with PH associated with non-SSc CTD.
Collapse
Affiliation(s)
- Brandon Budhram
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jason Weatherald
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marc Humbert
- Université Paris-Saclay, Inserm UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, European Reference Network for Rare Respiratory Diseases (ERN-LUNG), Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Distler O, Ofner C, Huscher D, Jordan S, Ulrich S, Stähler G, Grünig E, Held M, Ghofrani HA, Claussen M, Lange TJ, Klose H, Rosenkranz S, Vonk-Noordegraaf A, Vizza CD, Delcroix M, Opitz C, Pausch C, Scelsi L, Neurohr C, Olsson KM, Coghlan JG, Halank M, Skowasch D, Behr J, Milger K, Remppis BA, Skride A, Jureviciene E, Gumbiene L, Miliauskas S, Löffler-Ragg J, Wilkens H, Pittrow D, Hoeper MM, Ewert R. Treatment strategies and survival of patients with connective tissue disease and pulmonary arterial hypertension: a COMPERA analysis. Rheumatology (Oxford) 2024; 63:1139-1146. [PMID: 37462520 PMCID: PMC10986797 DOI: 10.1093/rheumatology/kead360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2023] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) occurs in various connective tissue diseases (CTDs). We sought to assess contemporary treatment patterns and survival of patients with various forms of CTD-PAH. METHODS We analysed data from COMPERA, a European pulmonary hypertension registry, to describe treatment strategies and survival in patients with newly diagnosed PAH associated with SSc, SLE, MCTD, UCTD and other types of CTD. All-cause mortality was analysed according to the underlying CTD. For patients with SSc-PAH, we also assessed survival according to initial therapy with endothelin receptor antagonists (ERAs), phosphodiesterase type 5 inhibitors (PDE5is) or a combination of these two drug classes. RESULTS This analysis included 607 patients with CTD-PAH. Survival estimates at 1, 3 and 5 years for SSc-PAH (n = 390) were 85%, 59% and 42%; for SLE-PAH (n = 34) they were 97%, 77% and 61%; for MCTD-PAH (n = 33) they were 97%, 70% and 59%; for UCTD-PAH (n = 60) they were 88%, 67% and 52%; and for other CTD-PAH (n = 90) they were 92%, 69% and 55%, respectively. After multivariable adjustment, the survival of patients with SSc-PAH was significantly worse compared with the other conditions (P = 0.001). In these patients, the survival estimates were significantly better with initial ERA-PDE5i combination therapy than with initial ERA or PDE5i monotherapy (P = 0.016 and P = 0.012, respectively). CONCLUSIONS Mortality remains high in patients with CTD-PAH, especially for patients with SSc-PAH. However, for patients with SSc-PAH, our results suggest that long-term survival may be improved with initial ERA-PDE5i combination therapy compared with initial monotherapy.
Collapse
Affiliation(s)
- Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Ofner
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology, and Berlin Institute of Health, Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd Stähler
- Klinik für Pneumologie, Klinik Fachklinik Löwenstein, Löwenstein, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Matthias Held
- Department of Internal Medicine, Respiratory Medicine and Ventilatory Support, Medical Mission Hospital, Central Clinic Würzburg, Würzburg, Germany
| | - H Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Martin Claussen
- Fachabteilung Pneumologie, LungenClinic Großhansdorf, Großhansdorf, Germany
| | - Tobias J Lange
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Hans Klose
- Department of Respiratory Medicine, Eppendorf University Hospital, Hamburg, Germany
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology) and Center for Molecular Medicine and the Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Anton Vonk-Noordegraaf
- Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - C Dario Vizza
- Dipartimento di Scienze Cliniche Internistiche, Anestiologiche e Cardiolohiche, Sapienza, University of Rome, Rome, Italy
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven–University of Leuven, Leuven, Belgium
| | - Christian Opitz
- Department of Cardiology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Christine Pausch
- GWT-TUD GmbH, Innovation Center Real World Evidence, Dresden, Germany
| | - Laura Scelsi
- Fondazione IRCSS S. Matteo Pavia, Division of Cardiology Stolfo Davide, Azienda Sanitaria Universitaria Giuliano Isontina, Pavia, Italy
| | - Claus Neurohr
- Department of Pulmonology and Respiratory Medicine, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center of Lung Research, Gießen, Germany
| | | | - Michael Halank
- Division of Pulmonology, Medical Department I, University Hospital Carl Gustav Carus of Technical University Dresden, Dresden, Germany
| | - Dirk Skowasch
- Innere Medizin–Kardiologie/Pneumologie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
| | | | - Andris Skride
- VSIA Pauls Stradins Clinical University Hospital, Riga, Lativa
| | - Elena Jureviciene
- Faculty of Medicine of Vilnius University, Competence Centre of Pulmonary Hypertension, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Lina Gumbiene
- Faculty of Medicine of Vilnius University, Competence Centre of Pulmonary Hypertension, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Skaidrius Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinrike Wilkens
- Innere Medizin V, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - David Pittrow
- GWT-TUD GmbH, Innovation Center Real World Evidence, Dresden, Germany
- Institute for Clinical Pharmacology, Medical Faculty, Technical University, Dresden, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center of Lung Research, Gießen, Germany
| | - Ralf Ewert
- Clinic of Internal Medicine, Department of Respiratory Medicine, Universitätsmedizin Greifswald, Germany
| |
Collapse
|
9
|
Thoreau B, Mouthon L. Pulmonary arterial hypertension associated with connective tissue diseases (CTD-PAH): Recent and advanced data. Autoimmun Rev 2024; 23:103506. [PMID: 38135175 DOI: 10.1016/j.autrev.2023.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Pulmonary arterial hypertension (PAH), corresponding to group 1 of pulmonary hypertension classification, is a rare disease with a major prognostic impact on morbidity and mortality. PAH can be either primary in idiopathic and heritable forms or secondary to other conditions including connective tissue diseases (CTD-PAH). Within CTD-PAH, the leading cause of PAH is systemic sclerosis (SSc) in Western countries, whereas systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are predominantly associated with PAH in Asia. Although many advances have been made during the last two decades regarding classification, definition early screening and risk stratification and therapeutic aspects with initial combination treatment, the specificities of CTD-PAH are not yet clear. In this manuscript, we review recent literature data regarding the updated definition and classification of PAH, pathogenesis, epidemiology, detection, prognosis and treatment of CTD-PAH.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Department of Internal Medicine, Referral Center for Rare Autoimmune and Systemic Diseases, AP-HP.Centre, Université Paris Cité, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75679 Cedex 14 Paris, France; Université Paris Cité, F-75006 Paris, France; INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France.
| | - Luc Mouthon
- Department of Internal Medicine, Referral Center for Rare Autoimmune and Systemic Diseases, AP-HP.Centre, Université Paris Cité, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75679 Cedex 14 Paris, France; Université Paris Cité, F-75006 Paris, France; INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Shi T, Wen X, Meng J, Lu Y. Effect of IL-17 on pulmonary artery smooth muscle cells and connective tissue disease-associated pulmonary arterial hypertension. Immun Inflamm Dis 2024; 12:e1243. [PMID: 38577988 PMCID: PMC10996375 DOI: 10.1002/iid3.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.
Collapse
Affiliation(s)
- Tian‐Yan Shi
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Xiao‐Hong Wen
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Juan Meng
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yue‐Wu Lu
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Novara ME, Di Martino E, Stephens B, Nayrouz M, Vitulo P, Carollo A, Provenzani A. Future Perspectives of Pulmonary Arterial Hypertension: A Review of Novel Pipeline Treatments and Indications. Drugs R D 2024; 24:13-28. [PMID: 38514585 PMCID: PMC11035521 DOI: 10.1007/s40268-024-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/23/2024] Open
Abstract
Pulmonary arterial hypertension is characterized by elevated blood pressure and pathological changes in the pulmonary arterioles, leading to the development of right-heart failure and potentially fatal outcomes if left untreated. This review aims to provide an overview of novel drugs or formulations and new drug indications for pulmonary arterial hypertension that are currently in phases II-III of randomized controlled trials, and describe the rationale for the use of these targeted therapies, as well as their efficacy, safety profile, and impact on quality of life and survival. The literature research was conducted using data from ClinicalTrials.gov for the period between 1 January 2016 up to 31 December 2022. The population of interest includes individuals aged ≥ 18 years who have been diagnosed with pulmonary arterial hypertension. The review selection criteria included trials with recruiting, enrolling by invitation, active, terminated or completed status in 2022 and 2023. A total of 24 studies were selected for evaluation based on the inclusion and exclusion criteria. This review summarizes the updated information from randomized clinical trials involving novel therapies for pulmonary arterial hypertension. However, larger clinical trials are required to validate their clinical safety and effects. In the future, clinicians should choose therapies based on the patient's individual situation and requirements when developing treatment strategies.
Collapse
Affiliation(s)
- Maria Eugenia Novara
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Enrica Di Martino
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Brandon Stephens
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary Nayrouz
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrizio Vitulo
- Pneumology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Anna Carollo
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Alessio Provenzani
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy.
| |
Collapse
|
12
|
Lan WF, Deng Y, Dai P, Wu DD, Hu J, Liao J, Meng H. Right ventricular-pulmonary arterial coupling ratio derived from 3-dimensional echocardiography predicts outcomes in systemic lupus erythematosus-associated pulmonary arterial hypertension patients. Lupus 2024; 33:155-165. [PMID: 38182135 DOI: 10.1177/09612033231226352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune connective tissue disease (CTD) that is an important cause of devastating pulmonary arterial hypertension (PAH), and persistent progression of PAH can lead to right heart failure, predicting a poor prognosis for SLE patients. Right ventricular-pulmonary arterial (RV-PA) coupling with echocardiography has been demonstrated to be a noninvasive alternative method for evaluating PAH patients' predictive outcomes. Whether the ratio of right ventricular stroke volume (RVSV) to right ventricular end-systolic volume (RVESV) measured by three-dimensional echocardiography (3DE) is a new index of RV-PA coupling has not been discussed as a new predictor for the clinical outcome of systemic lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH). METHODS From June 2019 to February 2023, 46 consecutive patients with SLE-PAH were enrolled prospectively, and their clinical data and echocardiographs were studied and analyzed. The control group consisted of 30 healthy subjects matched for age, sex, and body surface area (BSA). The main endpoints of this study were a composite of all-cause mortality and adverse clinical events. Baseline clinical characteristics and echocardiographic assessments were analyzed. RESULTS During a median of 24 months (IQR 18-31), 16 of 46 SLE-PAH patients (34.7%) experienced endpoint-related events. At baseline, patients who experienced mortality or adverse events had a worse WHO functional class (WHO FC) and lower anti-double-stranded DNA (dsDNA) antibody levels. The right ventricular (RV) systolic dysfunction in SLE-PAH subjects was significantly worse than that in the healthy control group, especially in SLE-PAH patients in the endpoint event group. Compared to controls, patients with SLE-PAH had a lower RVSV/RVESV ratio. In the group comparison, patients who had experienced an endpoint event had a sequentially worse ratio (1.86 (1.65-2.3) versus 1.30 (1.09-1.46) versus 0.64 (0.59-0.67), p < .001). There were statistically significant associations between the RVSV/RVESV ratio to routine RV systolic function and clinical parameters. The RVSV/RVESV ratio was negatively correlated with the WHO FC (r = -0.621, p < .001) and positively correlated with the anti-dsDNA level. The ROC curve showed that the optimal cutoff for RVSV/RVESV < 0.712 determined a higher risk of poor prognosis. Kaplan‒Meier survival curves showed that an RVSV/RVESV ratio >0.712 was associated with more favorable long-term outcomes. CONCLUSIONS The 3DE-derived SV/ESV ratio as a noninvasive alternative surrogate of RV-PA coupling was an eximious indicator for identifying endpoint events in SLE-PAH patients and can provide a diagnostic basis for clinical intervention.
Collapse
Affiliation(s)
- Wei-Fang Lan
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Deng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Dai
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan-Dan Wu
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Hu
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juan Liao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Meng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Suzuki Y, Nagaoka T, Terayama Y, Nagata Y, Yoshida T, Tsutsumi T, Kuriyama S, Matsushita M, Joki Y, Takasu K, Konishi H, Takahashi K. Prognostic analysis of pulmonary hypertension with lung parenchymal lesion: Comparison of mortality with and without connective tissue disease. Respir Investig 2024; 62:167-175. [PMID: 38142548 DOI: 10.1016/j.resinv.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND The prognosis of pulmonary hypertension (PH) associated with connective tissue diseases related to interstitial pneumonia (CTD-IP PH) is relatively good among patients with PH and lung disease. However, the impact of pulmonary vasodilator treatment on the prognosis of CTD-IP PH compared with that of PH-induced chronic lung disease (group-3 PH) remains unclear. METHODS From 2012 to 2022, 50 patients with lung parenchymal lesions diagnosed with PH (mean pulmonary arterial pressure >20 mmHg) at Juntendo University Hospital were divided into two groups: CTD-IP PH (30 patients) and group 3-PH (20 patients). The impact of pulmonary vasodilator treatment and the use of long-term oxygen therapy (LTOT) on the prognosis of each group was examined retrospectively. RESULTS The prognosis of CTD-IP PH was significantly better compared to group-3 PH. While the treatment with pulmonary vasodilators did not affect the prognosis in group 3-PH, the prognosis of the patients treated with vasodilators in the CTD-IP PH group was significantly better than that of the non-treated patients. Treatment with multi-pulmonary vasodilators did not affect the prognosis in CTD-IP PH. Although the prognosis for the patients with LTOT was poor in all registered patients in the present study, treatment with pulmonary vasodilators improved the prognosis even under the use of LTOT in CTD-IP PH (P = 0.002). In a multivariate analysis of the CTD-IP PH group, pulmonary vasodilator treatment was an independent factor for better prognosis. CONCLUSION Treatment with a pulmonary vasodilator for CTD-IP PH may improve the prognosis, even in patients requiring LTOT.
Collapse
Affiliation(s)
- Yoshifumi Suzuki
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Yuriko Terayama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Yuichi Nagata
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Takashi Yoshida
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Takeo Tsutsumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Masakazu Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Yusuke Joki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kiyoshi Takasu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Hakuoh Konishi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Huang J, An Q, Shi H, Li C, Zhang W, Wang L. Retrospective cohort study of pulmonary arterial hypertension associated with connective tissue disease effect on patients' prognosis. Clin Rheumatol 2023; 42:3131-3142. [PMID: 37382842 DOI: 10.1007/s10067-023-06667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE The objectives of this study are to clarify clinical characteristics and recognize prognostic factors of CTD-PAH patients. METHODS A retrospective cohort study of consecutive patients with documented CTD-PAH diagnosis from Jan 2014 to Dec 2019 was conducted, the ones who have other comorbid conditions that cause PH were excluded. Survival functions were plotted using the Kaplan-Meier method. Univariable and multivariable Cox regression analysis was applied to determine the survival-related factors. RESULTS In 144 patients with CTD-PAH analyzed, the median sPAP value was 52.5 (44.0, 71.0) mmHg, the overall targeted drug usage rate was 55.6%, and only 27.5% patients were given combination. Twenty-four non-PAH-CTD patients with sPAP value were included as the control group. Compared with non-PAH-CTD groups, CTD-PAH patients had worse cardiac function, higher NT-pro BNP and γ-globulin level, and lower PaCO2 level. Compared with the mild PAH group, the moderate-severe PAH group had worse cardiac function; increased Hb, HCT, and NP-pro BNP level; and decreased PaO2. Kaplan-Meier analysis showed significant difference for survival among non-PAH-CTD, mild CTD-PAH, and moderate-severe CTD-PAH groups. The univariate analyses showed that Hb, pH, and Ln (NT-pro BNP) were identified as factors significantly associated with survival, and Hb and pH showed significant association with risk of death in the multivariate model. Kaplan-Meier analysis also showed that Hb > 109.0 g/L and pH > 7.457 affected CTD-PAH patients' survival significantly. CONCLUSIONS PAH is not rare in CTDs patients; PAH affects CTD patients' prognosis significantly. Higher Hb and pH were associated with an increased risk of death. Key Points • Pulmonary arterial hypertension affects connective tissue disease patients' prognosis significantly. • The significantly factors associated with survival is hemoglobin, pH, and Ln (NT-pro BNP).
Collapse
Affiliation(s)
- Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi An
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyang Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No.157, Xiwu Road, Xincheng District, Xi'an, 710004, People's Republic of China
| | - Cong Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No.157, Xiwu Road, Xincheng District, Xi'an, 710004, People's Republic of China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No.157, Xiwu Road, Xincheng District, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
15
|
Khangoora V, Bernstein EJ, King CS, Shlobin OA. Connective tissue disease-associated pulmonary hypertension: A comprehensive review. Pulm Circ 2023; 13:e12276. [PMID: 38088955 PMCID: PMC10711418 DOI: 10.1002/pul2.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 10/16/2024] Open
Abstract
Connective tissue diseases (CTDs) can be associated with various forms of pulmonary hypertension, including pulmonary arterial hypertension (PAH), pulmonary veno-occlusive disease, pulmonary venous hypertension, interstitial lung disease-associated pulmonary hypertension, chronic thromboembolic pulmonary hypertension, and sometimes a combination of several processes. The prevalence of PAH varies among the different CTDs, with systemic sclerosis (SSc) having the highest at 8%-12%. The most recent European Society of Cardiology/European Respiratory Society guidelines recommend routine annual screening for PAH in SSc and CTDs with SSc features. As CTDs can be associated with a myriad of presentations of pulmonary hypertension, a thorough evaluation to include a right heart catheterization to clearly delineate the hemodynamic profile is essential in developing an appropriate treatment plan. Treatment strategies will depend on the predominant phenotype of pulmonary vasculopathy. In general, management approach to CTD-PAH mirrors that of idiopathic PAH. Despite this, outcomes of CTD-PAH are inferior to those of idiopathic PAH, with those of SSc-PAH being particularly poor. Reasons for this may include extrapulmonary manifestations of CTDs, including renal disease and gastrointestinal involvement, concurrent interstitial lung disease, and differences in the innate response of the right ventricle to increased pulmonary vascular resistance. Early referral for lung transplant evaluation of patients with CTD-PAH, particularly SSc-PAH, is recommended. It is hoped that in the near future, additional therapies may be added to the armamentarium of effective treatments for CTD-PAH. Ultimately, a better understanding of the pathogenesis of CTD-PAH will be required to develop targeted therapies for this morbid condition.
Collapse
Affiliation(s)
- Vikramjit Khangoora
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| | - Elana J. Bernstein
- Division of Rheumatology, Department of Medicine, Vagelos College of Physicians and SurgeonsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Christopher S. King
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| | - Oksana A. Shlobin
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| |
Collapse
|
16
|
ElHady AK, El-Gamil DS, Abdel-Halim M, Abadi AH. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:1266. [PMID: 37765073 PMCID: PMC10536424 DOI: 10.3390/ph16091266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors presented themselves as important players in the nitric oxide/cGMP pathway, thus exerting a profound impact on various physiological and pathological processes. Beyond their well-known efficacy in treating male erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), a plethora of studies have unveiled their significance in the treatment of a myriad of other diseases, including cognitive functions, heart failure, multiple drug resistance in cancer therapy, immune diseases, systemic sclerosis and others. This comprehensive review aims to provide an updated assessment of the crucial role played by PDE5 inhibitors (PDE5-Is) as disease-modifying agents taking their limiting side effects into consideration. From a medicinal chemistry and drug discovery perspective, the published PDE5-Is over the last 10 years and their binding characteristics are systemically discussed, and advancement in properties is exposed. A persistent challenge encountered with these agents lies in their limited isozyme selectivity; considering this obstacle, this review also highlights the breakthrough development of the recently reported PDE5 allosteric inhibitors, which exhibit an unparalleled level of selectivity that was rarely achievable by competitive inhibitors. The implications and potential impact of these novel allosteric inhibitors are meticulously explored. Additionally, the concept of multi-targeted ligands is critically evaluated in relation to PDE5-Is by inspecting the broader spectrum of their molecular interactions and effects. The objective of this review is to provide insight into the design of potent, selective PDE5-Is and an overview of their biological function, limitations, challenges, therapeutic potentials, undergoing clinical trials, future prospects and emerging uses, thus guiding upcoming endeavors in both academia and industry within this domain.
Collapse
Affiliation(s)
- Ahmed K. ElHady
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11865, Egypt;
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
17
|
Smukowska-Gorynia A, Gościniak W, Woźniak P, Iwańczyk S, Jaxa-Kwiatkowska K, Sławek-Szmyt S, Janus M, Paluszkiewicz J, Mularek-Kubzdela T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension Associated with Connective Tissue Diseases. Pharmaceuticals (Basel) 2023; 16:1252. [PMID: 37765060 PMCID: PMC10534675 DOI: 10.3390/ph16091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe vascular complication of connective tissue diseases (CTD). Patients with CTD may develop PH belonging to diverse groups: (1) pulmonary arterial hypertension (PAH), (2) PH due to left heart disease, (3) secondary PH due to lung disease and/or hypoxia and (4) chronic thromboembolic pulmonary hypertension (CTEPH). PAH most often develops in systemic scleroderma (SSc), mostly in its limited variant. PAH-CTD is a progressive disease characterized by poor prognosis. Therefore, early diagnosis should be established. A specific treatment for PAH-CTD is currently available and recommended: prostacyclin derivative (treprostinil, epoprostenol, iloprost, selexipag), nitric oxide and natriuretic pathway: stimulators of soluble guanylate cyclase (sGC: riociguat) and phosphodiesterase-five inhibitors (PDE5i: sildenafil, tadalafil), endothelin receptor antagonists (ERA: bosentan, macitentan, ambrisentan). Moreover, novel drugs, e.g., sotatercept, have been intensively investigated in clinical trials. We aim to review the literature on recent advances in the treatment strategy and prognosis of patients with PAH-CTD. In this manuscript, we discuss the mechanism of action of PAH-specific drugs and new agents and the latest research conducted on PAH-CTD patients.
Collapse
Affiliation(s)
- Anna Smukowska-Gorynia
- 1st Department of Cardiology, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848 Poznan, Poland; (W.G.); (P.W.); (S.I.); (K.J.-K.); (S.S.-S.); (M.J.); (J.P.); (T.M.-K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khan SL, Mathai SC. Scleroderma pulmonary arterial hypertension: the same as idiopathic pulmonary arterial hypertension? Curr Opin Pulm Med 2023; 29:380-390. [PMID: 37461869 PMCID: PMC11334969 DOI: 10.1097/mcp.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a common complication of systemic sclerosis (SSc), which confers significant morbidity and mortality. The current therapies and treatment strategies for SSc-associated PAH (SSc-PAH) are informed by those used to treat patients with idiopathic PAH (IPAH). There are, however, important differences between these two diseases that impact diagnosis, treatment, and outcomes. RECENT FINDINGS Both SSc-PAH and IPAH are incompletely understood with ongoing research into the underlying cellular biology that characterize and differentiate the two diseases. Additional research seeks to improve identification among SSc patients in order to diagnose patients earlier in the course of their disease. Novel therapies specifically for SSc-PAH such as rituximab and dimethyl fumarate are under investigation. SUMMARY Although patients with SSc-PAH and IPAH present with similar symptoms, there are significant differences between these two forms of PAH that warrant further investigation and characterization of optimal detection strategies, treatment algorithms, and outcomes assessment.
Collapse
Affiliation(s)
- Sarah L Khan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
19
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
20
|
Chen L, Li M, Shen M, Zhu Y, Chen K, Huang X, Zheng C, Wang Q, Lin H, Liao W, Bin J, Ma S, Liao Y. Bioinformatics exploration of potential common therapeutic targets for systemic and pulmonary arterial hypertension-induced myocardial hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37232575 DOI: 10.3724/abbs.2023071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Systemic and pulmonary arterial hypertension (PAH) can induce left and right ventricular hypertrophy, respectively, but common therapeutic targets for both left and right hypertrophy are limited. In this study, we attempt to explore potential common therapeutic targets and screen out potential target drugs for further study. Cardiac mRNA expression profiles in mice with transverse aortic constriction (TAC) and pulmonary arterial constriction (PAC) are obtained from online databases. After bioinformatics analyses, we generate TAC and PAC mouse models to validate the phenotypes of cardiac remodelling as well as the identified hub genes. Bioinformatics analyses show that there are 214 independent differentially expressed genes (DEGs) in GSE136308 (TAC related) and 2607 independent DEGs in GSE30922 (PAC related), while 547 shared DEGs are associated with the function of the extracellular matrix (ECM) or involved in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and ECM-receptor interactions. We identifyd Fn1, Il6, Col1a1, Igf1, Col1a2, Timp1, Col3a1, Cd44, Ctgf and Postn as hub genes of the shared DEGs, and most of them are associated with myocardial fibrosis. Those hub genes and phenotypes of cardiac remodelling are validated in our TAC and PAC mouse models. Furthermore, we identify dehydroisoandrosterone (DHEA), iloprost and 4,5-dianilinophthalimide (DAPH) as potential therapeutic drugs targeting both left and right ventricular hypertrophy and validate the effect of DHEA. These findings suggest that DHEA could be an effective drug for pressure overload-induced left or right ventricular hypertrophy by regulating the shared hub differentially expressed genes associated with fibrosis.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Tsang Y, Singh R, Verma S, Panjabi S. Hospitalization Among Pulmonary Arterial Hypertension Patients With and Without Connective Tissue Disease Comorbidities Prescribed Oral Selexipag. Rheumatol Ther 2023; 10:741-756. [PMID: 36959524 PMCID: PMC10140235 DOI: 10.1007/s40744-023-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION Patients with connective tissue disorders (CTD) and pulmonary arterial hypertension (PAH) have a poorer prognosis than those with other PAH etiologies. This study assessed the impact of CTD on healthcare outcomes among PAH patients with and without CTD comorbidities that were treated with oral selexipag. METHODS The study utilized Optum's de-identified Clinformatics® Data Mart Database (2007-2021) from January 1, 2014 to June 30, 2019, and identified patients with PAH without CTD and PAH with CTD treated with oral selexipag. Patients had ≥ 12-month baseline period with no requirement for a minimum follow-up period. Patients were followed until any of the following events: discontinuation of oral selexipag, or health plan disenrollment, or death, or presence of a diagnosis claim for CTEPH, or study end date, whichever occurred first. PAH-related hospitalizations, PAH disease progression, and healthcare utilizations and costs were assessed in the follow-up period. The Cox proportional hazards model was used to evaluate the time to hospitalization and generalized linear models were used to examine healthcare costs and utilization between the two cohorts. RESULTS In the analysis, 237 PAH without CTD, and 80 PAH patients with CTD comorbidities prescribed oral selexipag were included. The PAH without CTD comorbidities cohort was older (65 vs. 63 years old), had proportionately less females (72 vs. 83%), and higher comorbidity burden than PAH with CTD comorbidities (mean CCI index 3 vs. 2). After adjusting for potential confounders, the risk for PAH-related hospitalization (hazard ratio (HR) 1.13, p value 0.641), all-cause hospitalization (HR 1.09, p value: 0.765), and PAH disease progression (HR 1.14, p value 0.522) between the two cohorts were similar. After adjusting for baseline demographic and clinical characteristics, PAH with CTD comorbidities incurred higher total mean all-cause PAH-related medical care costs compared to PAH without CTD comorbidities. CONCLUSIONS In this real-world study, the risk of hospitalization and PAH disease progression were similar between the two cohorts who received oral selexipag. The results from this study corroborate findings of the GRIPHON post hoc analysis of PAH-associated CTD patients and support oral selexipag use in PAH-CTD patients.
Collapse
Affiliation(s)
- Yuen Tsang
- Janssen Scientific Affairs, Titusville, NJ, USA
| | - Risho Singh
- STATinMED, LLC, 13101 Preston Rd Suite 110, #3395, Dallas, TX, 75240, USA
| | - Sumit Verma
- STATinMED, LLC, 13101 Preston Rd Suite 110, #3395, Dallas, TX, 75240, USA.
| | | |
Collapse
|
22
|
Systemic Lupus Erythematosus and Pulmonary Hypertension. Int J Mol Sci 2023; 24:ijms24065085. [PMID: 36982160 PMCID: PMC10049584 DOI: 10.3390/ijms24065085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Pulmonary Hypertension (PH) is a common manifestation in patients with Systemic Lupus Erythematosus (SLE) and varies from asymptomatic to life-threatening disease. PH can result not only from immune system dysregulation, but also from various conditions, including cardiorespiratory disorders and thromboembolic diseases. Most commonly, SLE-related PH presents with non-specific symptoms, such as progressive dyspnea on exertion, generalized fatigue and weakness and eventually dyspnea at rest. Prompt diagnosis of SLE-related PH and early identification of the underlying pathogenetic mechanisms is demanded in order to introduce targeted therapy to prevent irreversible pulmonary vascular damage. In most cases the management of PH in SLE patients is similar to idiopathic pulmonary arterial hypertension (PAH). Furthermore, specific diagnostic tools like biomarkers or screening protocols, to establish early diagnosis seem to be not available yet. Although, the survival rates for patients with SLE-related PH vary between studies, it is evident that PH presence negatively affects the survival of SLE patients.
Collapse
|
23
|
Ge B, Yang H, Ma P, Guo T, Pan J, Wang W. Detection of pulmonary hypertension associated with congenital heart disease based on time-frequency domain and deep learning features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Ge B, Yang H, Ma P, Guo T, Pan J, Wang W. Detection of pulmonary arterial hypertension associated with congenital heart disease based on time–frequency domain and deep learning features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
25
|
Huang WC, Hsieh SC, Wu YW, Hsieh TY, Wu YJ, Li KJ, Charng MJ, Chen WS, Sung SH, Tsao YP, Ho WJ, Lai CC, Cheng CC, Tsai HC, Hsu CH, Lu CH, Chiu YW, Shen CY, Wu CH, Liu FC, Lin YH, Yeh FC, Liu WS, Lee HT, Wu SH, Chang CC, Chu CY, Hou CJY, Tsai CY. 2023 Taiwan Society of Cardiology (TSOC) and Taiwan College of Rheumatology (TCR) Joint Consensus on Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. ACTA CARDIOLOGICA SINICA 2023; 39:213-241. [PMID: 36911549 PMCID: PMC9999177 DOI: 10.6515/acs.202303_39(2).20230117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Background Pulmonary arterial hypertension (PAH), defined as the presence of a mean pulmonary artery pressure > 20 mmHg, pulmonary artery wedge pressure ≤ 15 mmHg, and pulmonary vascular resistance (PVR) > 2 Wood units based on expert consensus, is characterized by a progressive and sustained increase in PVR, which may lead to right heart failure and death. PAH is a well-known complication of connective tissue diseases (CTDs), such as systemic sclerosis, systemic lupus erythematosus, Sjogren's syndrome, and other autoimmune conditions. In the past few years, tremendous progress in the understanding of PAH pathogenesis has been made, with various novel diagnostic and screening methods for the early detection of PAH proposed worldwide. Objectives This study aimed to obtain a comprehensive understanding and provide recommendations for the management of CTD-PAH in Taiwan, focusing on its clinical importance, prognosis, risk stratification, diagnostic and screening algorithm, and pharmacological treatment. Methods The members of the Taiwan Society of Cardiology (TSOC) and Taiwan College of Rheumatology (TCR) reviewed the related literature thoroughly and integrated clinical trial evidence and real-world clinical experience for the development of this consensus. Conclusions Early detection by regularly screening at-risk patients with incorporations of relevant autoantibodies and biomarkers may lead to better outcomes of CTD-PAH. This consensus proposed specific screening flowcharts for different types of CTDs, the risk assessment tools applicable to the clinical scenario in Taiwan, and a recommendation of medications in the management of CTD-PAH.
Collapse
Affiliation(s)
- Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Department of Physical Therapy, Fooyin University, Kaohsiung
| | - Song-Chou Hsieh
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Yen-Wen Wu
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Tsu-Yi Hsieh
- Attending Physician of Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine
- Director of Division of Clinical Training, Department of Medical Education, Taichung Veterans General Hospital
- Program of Business, College of Business, Feng Chia University, Taichung
| | - Yih-Jer Wu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital
- National Taiwan University, College of Medicine
| | - Min-Ji Charng
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Cardiology
| | - Wei-Sheng Chen
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Shih-Hsien Sung
- Department of Medicine, Taipei Veterans General Hospital
- Institute of Emergency and Critical Care Medicine
| | - Yen-Po Tsao
- Division of Allergy, Immunology and Rheumatology
- Institutes of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Wan-Jing Ho
- Department of Cardiology, Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University, Taoyuan
| | - Chien-Chih Lai
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Chin-Chang Cheng
- Department of Internal Medicine, Pingtung Veteran General Hospital, Pingtung
| | - Hung-Cheng Tsai
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Cheng-Hsun Lu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | - Yu-Wei Chiu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan
| | - Chieh-Yu Shen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
- National Taiwan University, College of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Medical Sciences, National Defense Medical Center
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
- Cardiovascular Center, National Taiwan University Hospital, Taipei
| | - Fu-Chiang Yeh
- Division of Rheumatology/Immunology and Allergy, Department of Medicine
| | - Wei-Shin Liu
- Division of Cardiology, Tzu-Chi General Hospital, Hualien
| | - Hui-Ting Lee
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Shu-Hao Wu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Chi-Ching Chang
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei
| | - Chun-Yuan Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital
- Faculty of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- MacKay Medical College
| | - Chang-Youh Tsai
- Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| |
Collapse
|
26
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61:13993003.00879-2022. [PMID: 36028254 DOI: 10.1183/13993003.00879-2022] [Citation(s) in RCA: 638] [Impact Index Per Article: 319.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gabor Kovacs
- University Clinic of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School, Hanover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), member of the German Centre of Lung Research (DZL), Hanover, Germany
| | - Roberto Badagliacca
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Roma, Italy
- Dipartimento Cardio-Toraco-Vascolare e Chirurgia dei Trapianti d'Organo, Policlinico Umberto I, Roma, Italy
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, Dept of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margarita Brida
- Department of Sports and Rehabilitation Medicine, Medical Faculty University of Rijeka, Rijeka, Croatia
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J S Coats
- Faculty of Medicine, University of Warwick, Coventry, UK
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Pilar Escribano-Subias
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV (Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pisana Ferrari
- ESC Patient Forum, Sophia Antipolis, France
- AIPI, Associazione Italiana Ipertensione Polmonare, Bologna, Italy
| | - Diogenes S Ferreira
- Alergia e Imunologia, Hospital de Clinicas, Universidade Federal do Parana, Curitiba, Brazil
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
- Department of Pneumology, Kerckhoff Klinik, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| | - George Giannakoulas
- Cardiology Department, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gergely Meszaros
- ESC Patient Forum, Sophia Antipolis, France
- European Lung Foundation (ELF), Sheffield, UK
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Göran Rådegran
- Department of Cardiology, Clinical Sciences Lund, Faculty of Medicine, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Gerald Simonneau
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hypertension Pulmonaire, Hopital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mark Toshner
- Dept of Medicine, Heart Lung Research Institute, University of Cambridge, Royal Papworth NHS Trust, Cambridge, UK
| | - Jean-Luc Vachiery
- Department of Cardiology, Pulmonary Vascular Diseases and Heart Failure Clinic, HUB Hôpital Erasme, Brussels, Belgium
| | | | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Centre of Pulmonary Vascular Diseases, University Hospitals of Leuven, Leuven, Belgium
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Department of Cardiology, Pulmonology and Intensive Care Medicine), and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Köln, Germany
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | | |
Collapse
|
27
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43:3618-3731. [PMID: 36017548 DOI: 10.1093/eurheartj/ehac237] [Citation(s) in RCA: 1408] [Impact Index Per Article: 469.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Wang RR, Yuan TY, Wang JM, Chen YC, Zhao JL, Li MT, Fang LH, Du GH. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res 2022; 180:106238. [DOI: 10.1016/j.phrs.2022.106238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
|
29
|
Sugiyama Y, Matsubara H, Shimokawahara H, Ogawa A. Outcome of mean pulmonary arterial pressure-based intensive treatment for patients with pulmonary arterial hypertension. J Cardiol 2022; 80:432-440. [DOI: 10.1016/j.jjcc.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
|
30
|
Bohdziewicz A, Pawlik KK, Maciejewska M, Sikora M, Alda-Malicka R, Czuwara J, Rudnicka L. Future Treatment Options in Systemic Sclerosis-Potential Targets and Ongoing Clinical Trials. J Clin Med 2022; 11:1310. [PMID: 35268401 PMCID: PMC8911443 DOI: 10.3390/jcm11051310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Systemic sclerosis is an autoimmune connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs. The pathogenesis of systemic sclerosis is very complex. Mediators produced by immune cells are involved in the inflammatory processes occurring in the tissues. The currently available therapeutic options are often insufficient to halt disease progress. This article presents an overview of potential therapeutic targets and the pipeline of possible future therapeutic options. It is based on research of clinical trials involving novel, unestablished methods of treatment. Increasing knowledge of the processes and mediators involved in systemic scleroderma has led to the initiation of drug trials with therapeutic targets of CD28-CD80/86, CD19, CCL24, CD20, CD30, tumor necrosis factor (TNF), transforming growth factor β (TGF-β), B-cell activating factor (BAFF), lysophosphatidic acid receptor 1 (LPA1 receptor), soluble guanylate cyclase (sGC), Janus kinases (JAK), interleukin 6 (IL-6), endothelin receptor, and autotaxin. Data from clinical trials on these drugs indicate a significant potential for several new therapeutic options for systemic sclerosis in the upcoming future.
Collapse
Affiliation(s)
- Anna Bohdziewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Katarzyna Karina Pawlik
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Rosanna Alda-Malicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| |
Collapse
|
31
|
Fu W, He W, Li Y, Chen Y, Liang J, Lei H, Fu L, Chen Y, Ren N, Jiang Q, Shen Y, Ma R, Wang T, Wang X, Zhang N, Xiao D, Liu C. Efficacy and safety of novel-targeted drugs in the treatment of pulmonary arterial hypertension: a Bayesian network meta-analysis. Drug Deliv 2021; 28:1007-1019. [PMID: 34060401 PMCID: PMC8172220 DOI: 10.1080/10717544.2021.1927243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a severe and fatal clinical syndrome characterized by high blood pressure and vascular remodeling in the pulmonary arterioles, which is also a rapidly progressing disease of the lung vasculature with a poor prognosis. Although PAH medication made great advances in recent years, the efficacy and safety of the medication are unsatisfactory. Therefore, we aimed to update and expand previous studies to explore the efficacy and safety of PAH-targeted medications. Methods: Relevant articles were searched and selected from published or publicly available data in PubMed, Cochrane Library, CNKI, PsycInfo, and MEDLINE (from inception until October 1st, 2020). To assess the efficacy and safety of PAH therapies, five efficacy outcomes [6-minute walking distance (6MWD), mean pulmonary arterial pressure (mPAP), WHO functional class (WHO FC) improvement, clinical worsening, death] and two safety outcomes [adverse events (AEs), serious adverse events (SAEs)] were selected. And 6MWD was regarded as the primary efficacy outcome.Results: 50 trials included with 10 996participants were selected. In terms of efficacy, all targeted drugs were more effective than placebo. For 6MWD, Bosentan + Sildenafil, Sildenafil, Bosentan + Iloprost were better than others. Bosentan + Iloprost and Bosentan + Sildenafil were better for mPAP. Bosentan + Iloprost and Ambrisentan + Tadalafil were more effective in improving WHO FC. Bosentan + Tadalafil and Bosentan + Iloprost had the Ambrisentan probability to reduce the incidence of clinical worsening. It is demonstrated that Ambrisentan had clear benefits in reducing all-cause mortality. In terms of safety, no therapies had been shown to reduce the incidence of SAEs significantly, and Ambrisentan + Tadalafil significantly increased the incidence of AEs.Conclusions: Phosphodiesterase 5 inhibitor (PDE5i) + Endothelin Receptor Antagonists (ERA) seems to be better therapy for PAH. Prostacyclin analogs (ProsA) + ERA appear promising, though additional data is warranted.Registration PROSPERO CRD42020218818.
Collapse
Affiliation(s)
- Wenhai Fu
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wenjun He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuexin Li
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hui Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Lin Fu
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yanghang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ni Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yi Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ran Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xinni Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Nuofu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Dakai Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunli Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
32
|
Hanaoka H, Ishigaki S, Takei H, Hiramoto K, Saito S, Kondo Y, Kikuchi J, Kaneko Y, Takeuchi T. Early combination of pulmonary vasodilators prevents chronic kidney disease progression in connective tissue disease-associated pulmonary hypertension. Int J Rheum Dis 2021; 24:1419-1426. [PMID: 34626090 DOI: 10.1111/1756-185x.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
AIM Pulmonary hypertension (PH) and chronic kidney disease (CKD) are interdependent for their development and exacerbation. We evaluated the effect of PH on CKD progression in patients with connective tissue disease (CTD)-associated PH. METHODS We reviewed consecutive patients with CTD who were diagnosed with PH with right heart catheter (RHC) examinations in our hospital. Patients were divided into 2 groups according to the use of vasodilators: monotherapy or combination therapy. We further divided the patients with combination therapy into early and non-early combination groups. Early combination was defined as the addition of the second vasodilator within 1 month after starting the first drug. The clinical course of hemodynamics and CKD progression were compared. RESULTS Thirty-eight patients were included in the analysis: 10 were treated with monotherapy and 28 with combination therapy (14 with early and 14 with non-early). At baseline, patients who received combination therapy had a significantly higher mean pulmonary arterial pressure with RHC and a higher right ventricular systolic pressure (RVSP) with echocardiography (P = .04) and showed a greater improvement in RVSP after treatment than those who underwent monotherapy. The incidence of CKD progression was significantly lower in patients who received combination therapy than in those who received monotherapy (P = .05). Among patients who received combination therapy, the early combination group had a lower incidence of CKD progression than the non-early combination group (P = .03). CONCLUSIONS Early combination therapy is associated with a lower incidence of CKD progression in patients with CTD-associated PH.
Collapse
Affiliation(s)
- Hironari Hanaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Takei
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuoto Hiramoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Hjalmarsson C, Kjellström B, Jansson K, Nisell M, Kylhammar D, Kavianipour M, Rådegran G, Söderberg S, Wikström G, Wuttge DM, Hesselstrand R. Early risk prediction in idiopathic versus connective tissue disease-associated pulmonary arterial hypertension: call for a refined assessment. ERJ Open Res 2021; 7:00854-2020. [PMID: 34350280 PMCID: PMC8326683 DOI: 10.1183/23120541.00854-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/14/2021] [Indexed: 11/05/2022] Open
Abstract
Despite systematic screening and improved treatment strategies, the prognosis remains worse in patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) compared to patients with idiopathic/hereditary pulmonary arterial hypertension (IPAH). We aimed to investigate differences in clinical characteristics, outcome and performance of the European Society of Cardiology (ESC)/ European Respiratory Society (ERS) risk stratification tool in these patient groups. This retrospective analysis included incident patients with CTD-PAH (n=197, of which 64 had interstitial lung disease, ILD) or IPAH (n=305) enrolled in the Swedish PAH Register (SPAHR) 2008-2019. Patients were classified as low, intermediate or high risk at baseline, according to the "SPAHR-equation". One-year survival, stratified by type of PAH, was investigated by Cox proportional regression. At baseline, CTD-PAH patients had lower diffusing capacity for carbon monoxide and lower haemoglobin but, at the same time, lower N-terminal prohormone-brain natriuretic peptide, longer 6 min walk distance, better haemodynamics and more often a low-risk profile. No difference in age, World Health Organisation functional class (WHO-FC) or renal function between groups was found. One-year survival rates were 75, 82 and 83% in patients with CTD-PAH with ILD, CTD-PAH without ILD and IPAH, respectively. The 1-year mortality rates for low-, intermediate- and high-risk groups in the whole cohort were 0, 18 and 34% (p<0.001), respectively. Corresponding percentages for CTD-PAH with ILD, CTD-PAH without ILD and IPAH patients were: 0, 26, 67% (p=0.008); 0, 19, 39% (p=0.004); and 0, 16, 29% (p=0.001), respectively. The ESC/ERS risk assessment tool accurately identified low-risk patients but underestimated the 1-year mortality rate of CTD-PAH and IPAH patients assessed as having intermediate risk at diagnosis.
Collapse
Affiliation(s)
- Clara Hjalmarsson
- Dept of Cardiology, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Barbro Kjellström
- Dept of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden.,Cardiology Unit, Dept of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Jansson
- Division of Diagnostics and Specialist Medicine, Dept of Health, Medicine and Caring Sciences, and Dept of Clinical Physiology, Linköping University, Linköping, Sweden
| | - Magnus Nisell
- Dept of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Dept of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - David Kylhammar
- Division of Diagnostics and Specialist Medicine, Dept of Health, Medicine and Caring Sciences, and Dept of Clinical Physiology, Linköping University, Linköping, Sweden
| | - Mohammad Kavianipour
- Dept of Public Health and Clinical Medicine, Sundsvall Research Unit, Umeå University, Umeå, Sweden
| | - Göran Rådegran
- Dept of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Stefan Söderberg
- Dept of Public Health and Clinical Medicine, Heart Centre, Umeå University, Umeå, Sweden
| | - Gerhard Wikström
- Dept of Medical Sciences, Cardiology, Uppsala University, and Uppsala Academic Hospital, Uppsala, Sweden
| | - Dirk M Wuttge
- Dept of Clinical Sciences Lund, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roger Hesselstrand
- Dept of Clinical Sciences Lund, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Escribano Subías P, Aurtenetxe Pérez A, Pérez Olivares C, Gómez Climent L, Diago Cabezudo JI, Perelló MF. Recent advances in the management of pulmonary arterial hypertension: lessons from the upfront combination of ambrisentan and tadalafil. Expert Rev Respir Med 2021; 15:493-504. [PMID: 33472458 DOI: 10.1080/17476348.2021.1878027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The sixth World Symposium of Pulmonary Hypertension (sixth WSPH) brought to the forefront for the first time the value of earlier, aggressive management with an upfront oral combination in patients with pulmonary arterial hypertension (PAH) of low or intermediate risk. This was prompted by results from the AMBITION study (ambrisentan + tadalafil). A literature search was conducted to collect all evidence provided by upfront treatment with this combination, as well as other combinations under investigation at the time the manuscript was prepared. AREAS COVERED The value of an upfront oral combination with ambrisentan and tadalafil is reviewed on the basis of topics discussed at the sixth WSPH, such as evidence in different PAH etiologies, according to risk stratification and in so-called 'atypical' patients where monotherapy is still recommended. Evidence in clinical practice is also reviewed. New evidence about the value of the upfront oral combination is also commented. Finally, tendencies in primary endpoints to assess the effect of PAH-targeted therapies (time to clinical worsening and hemodynamics) and their value are also reviewed. EXPERT OPINION All above-mentioned aspects are put into perspective with regard to the impact of new advances on improving PAH management in clinical practice.
Collapse
Affiliation(s)
- Pilar Escribano Subías
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Agueda Aurtenetxe Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Servicio de Neumología, Hospital Universitario Basurto, Bilbao, Spain
| | - Carmen Pérez Olivares
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Bruni C, Guignabert C, Manetti M, Cerinic MM, Humbert M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. THE LANCET. RHEUMATOLOGY 2021; 3:e149-e159. [PMID: 38279370 DOI: 10.1016/s2665-9913(20)30356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/16/2023]
Abstract
Cardiopulmonary complications are a leading cause of death in systemic sclerosis. Pulmonary hypertension in particular carries a high mortality and morbidity burden. Patients with systemic sclerosis can suffer from all of the clinical groups of pulmonary hypertension, particularly pulmonary arterial hypertension and pulmonary hypertension related to interstitial lung disease. Despite a similar pathogenetic background with idiopathic pulmonary arterial hypertension, different mechanisms determine a worse prognostic outcome for patients with systemic sclerosis. In this Viewpoint, we will consider the link between pathogenetic and potential therapeutic targets for the treatment of pulmonary hypertension in the context of systemic sclerosis, with a focus on the current unmet needs, such as the importance of early screening and detection, the absence of agreed criteria to distinguish pulmonary arterial hypertension with interstitial lung disease from pulmonary hypertension due to lung fibrosis, and the need for a holistic treatment approach to target all the vascular, immunological, and inflammatory components of the disease.
Collapse
Affiliation(s)
- Cosimo Bruni
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Christophe Guignabert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mirko Manetti
- Section of Anatomy and Histology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
36
|
Kato M, Sugimoto A, Atsumi T. Diagnostic and prognostic markers and treatment of connective tissue disease-associated pulmonary arterial hypertension: current recommendations and recent advances. Expert Rev Clin Immunol 2020; 16:993-1004. [PMID: 32975145 DOI: 10.1080/1744666x.2021.1825940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH), also referred to as group 1 pulmonary hypertension, occurs either primarily or in association with other diseases such as connective tissue diseases (CTD). Of CTD, systemic sclerosis (SSc), systemic lupus erythematosus and mixed connective tissue disease are commonly accompanied with PAH. It is of note that SSc-PAH is associated with distinctive histopathology, an unfavorable outcome, and a blunted responsiveness to modern PAH therapies. AREAS COVERED The data in articles published until May 2020 in peer-reviewed journals, covered by PubMed databank, are discussed. The current review introduces recent advances over the past years which have moved our understanding of CTD-PAH forward and discusses what we are currently able to do and what will be necessary in the future to overcome the yet unsatisfactory situation in the management of CTD-PAH, particularly in that of SSc-PAH. EXPERT OPINION A multifaceted and integrated approach would be crucial to improve the outcome of patients with SSc-PAH. The authors also propose a possible algorithm to classify and treat SSc patients with suspicion of pulmonary vascular disease.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Ayako Sugimoto
- First Department of Medicine, Hokkaido University Hospital , Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| |
Collapse
|