1
|
Mangiantini P, Mallone F, D’Andrea M, Albanesi L, Lucchino L, Celli L, Celli M, Lambiase A, Moramarco A. Corneal Alterations in Patients with Osteogenesis Imperfecta: An in vivo Corneal Confocal Microscopy Study. Clin Ophthalmol 2024; 18:3977-3988. [PMID: 39741796 PMCID: PMC11687199 DOI: 10.2147/opth.s470183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Osteogenesis imperfecta (OI) is a rare hereditary disorder of the connective tissue. Despite recent attention to corneal abnormalities in OI, understanding remains limited. This study aimed to comprehensively evaluate corneal changes in a large sample of OI patients compared to controls using in vivo confocal microscopy (IVCM). Patients and Methods Nineteen OI patients (mean age: 34.0 ± 16.00 years; 9 females, 10 males) and 20 healthy controls (mean age: 35.5 ± 12.00; 12 females, 8 males) were included, matched for age and gender. The integrity of corneal cell layers, with a focus on Bowman's layer and sub-epithelial stroma, was evaluated. Additionally, we conducted a quantitative analysis of the corneal sub-basal nerve plexus (CSNP), measuring nerve fiber density (NFD), nerve branch density (NBD), nerve fiber length (NFL), and dendritic cells (DCs) density. Clinical parameters including blue discoloration of the sclera, corneal thickness and sensitivity were also evaluated. Results Bowman's layer alterations were observed in 42.11% of OI patients. NFD was significantly reduced in OI patients (27,3±6.98 vs controls 37.85±13,74 fiber/mm2; p-value=0.005). NBD and NFL were lower in OI patients but did not reach statistical significance (p=0.650 and p=0.120, respectively). DCs density was higher in OI patients than controls (11,37 ± 12.79 vs 2.09±2,91 cells/mm2; p-value < 0.001). Corneal thickness and sensitivity were significantly reduced in OI patients compared to controls (p<0.001, p=0.001, respectively). OI patients with blue sclera or abnormal Bowman's layer exhibited even lower central corneal thickness (CCT) (p=0.010, p=0.005, respectively). Conclusion OI patients demonstrated Bowman's layer abnormalities, neuropathic changes and higher inflammatory cell count. These results suggest potential corneal complications, and hold promise for diagnostic applications and intervention strategies in OI.
Collapse
Affiliation(s)
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Mattia D’Andrea
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | - Luca Lucchino
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Luca Celli
- Department of Pediatrics, Center for Congenital Osteodystrophy, Sapienza University, Rome, Italy
| | - Mauro Celli
- Department of Pediatrics, Center for Congenital Osteodystrophy, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
2
|
Defabianis P, Ninivaggi R, Bocca N, De Sanctis L, Tessaris D, Romano F. Impaired salivary gland function in children with osteogenesis imperfecta: a case-control study. Clin Oral Investig 2024; 29:14. [PMID: 39671080 DOI: 10.1007/s00784-024-06100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES The aim of the present study was to evaluate salivary gland function and oral health status in Osteogenesis imperfecta (OI) children, comparing to a control group, and to investigate the possible influence of bisphosphonate (BP) treatment. MATERIALS AND METHODS Patients aged 8-15 years with any OI molecularly confirmed and gender-matched healthy control were consecutively recruited at the Section of Pediatric Dentistry (Dental School-University of Turin). Comprehensive dental examinations were conducted to evaluate carious lesions, plaque and gingival index, stimulated saliva flow rate, pH, and buffer capacity. RESULTS A total al of 22 OI patients (mean age: 10.7 ± 2.4 years) and 22 age- and gender-matched healthy controls (mean age: 10.3 ± 2.3 years) were consecutively enrolled. In OI patients reduced saliva quality and quantity and poor oral health, were observed compared to healthy peers. OI subjects exhibited significantly lower stimulated salivary flow rates (SFR; P < 0.001), higher gingival inflammatory status (P = 0.003) and carious experience in both the deciduous (P = 0.038) and permanent dentition (P = 0.005) Stratifying data based on BP assumption, statistically significant differences in resting (P = 0.024) and stimulated SFR (P = 0.019) were observed as compared to OI subjects not using BP drugs. CONCLUSIONS Pediatric OI patients show reduced SFR and poor oral health, highlighting the need for regular screenings and early salivary management. CLINICAL RELEVANCE Impairment of salivary gland function is suggested by these preliminary data in pediatric patients with OI.
Collapse
Affiliation(s)
- Patrizia Defabianis
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Rossella Ninivaggi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
| | - Norma Bocca
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Luisa De Sanctis
- Department of Pediatric Endocrinology, Regina Margherita Children's Hospital, Turin, Italy
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Daniele Tessaris
- Department of Pediatric Endocrinology, Regina Margherita Children's Hospital, Turin, Italy
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Rapoport M, Bober MB, Raggio C, Wekre LL, Rauch F, Westerheim I, Hart T, van Welzenis T, Mistry A, Clancy J, Booth L, Prince S, Semler O. The patient clinical journey and socioeconomic impact of osteogenesis imperfecta: a systematic scoping review. Orphanet J Rare Dis 2023; 18:34. [PMID: 36814274 PMCID: PMC9945474 DOI: 10.1186/s13023-023-02627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder primarily characterised by skeletal deformity and fragility, and an array of secondary features. The purpose of this review was to capture and quantify the published evidence relating specifically to the clinical, humanistic, and economic impact of OI on individuals, their families, and wider society. METHODS A systematic scoping review of 11 databases (MEDLINE, MEDLINE in-progress, EMBASE, CENTRAL, PsycINFO, NHS EED, CEA Registry, PEDE, ScHARRHUd, Orphanet and Google Scholar), supplemented by hand searches of grey literature, was conducted to identify OI literature published 1st January 1995-18th December 2021. Searches were restricted to English language but without geographical limitations. The quality of included records was assessed using the AGREE II checklist and an adapted version of the JBI cross-sectional study checklist. RESULTS Of the identified 7,850 records, 271 records of 245 unique studies met the inclusion criteria; overall, 168 included records examined clinical aspects of OI, 67 provided humanistic data, 6 reported on the economic impact of OI, and 30 provided data on mixed outcomes. Bone conditions, anthropometric measurements, oral conditions, diagnostic techniques, use of pharmacotherapy, and physical functioning of adults and children with OI were well described. However, few records included current care practice, diagnosis and monitoring, interactions with the healthcare system, or transition of care across life stages. Limited data on wider health concerns beyond bone health, how these concerns may impact health-related quality of life, in particular that of adult men and other family members, were identified. Few records described fatigue in children or adults. Markedly few records provided data on the socioeconomic impact of OI on patients and their caregivers, and associated costs to healthcare systems, and wider society. Most included records had qualitative limitations. CONCLUSION Despite the rarity of OI, the volume of recently published literature highlights the breadth of interest in the OI field from the research community. However, significant data gaps describing the experience of OI for individuals, their families, and wider society warrant further research to capture and quantify the full impact of OI.
Collapse
Affiliation(s)
| | | | | | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Bjørnemyr, Nesodden, Norway
| | | | | | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | | | | | - Lucy Booth
- Wickenstones Ltd, Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|
5
|
Claeys L, Zhytnik L, Wisse LE, van Essen HW, Eekhoff EMW, Pals G, Bravenboer N, Micha D. Exploration of the skeletal phenotype of the Col1a1 +/Mov13 mouse model for haploinsufficient osteogenesis imperfecta type 1. Front Endocrinol (Lausanne) 2023; 14:1145125. [PMID: 36967771 PMCID: PMC10031054 DOI: 10.3389/fendo.2023.1145125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Osteogenesis Imperfecta is a rare genetic connective tissue disorder, characterized by skeletal dysplasia and fragile bones. Currently only two mouse models have been reported for haploinsufficient (HI) mild Osteogenesis Imperfecta (OI); the Col1a1 +/Mov13 (Mov13) and the Col1a1 +/-365 mouse model. The Mov13 mice were created by random insertion of the Mouse Moloney leukemia virus in the first intron of the Col1a1 gene, preventing the initiation of transcription. Since the development of the Mov13 mice almost four decades ago and its basic phenotypic characterization in the 90s, there have not been many further studies. We aimed to extensively characterize the Mov13 mouse model in order to critically evaluate its possible use for preclinical studies of HI OI. METHODS Bone tissue from ten heterozygous Mov13 and ten wild-type littermates (WT) C57BL/6J mice (50% males per group) was analyzed at eight weeks of age with bone histomorphometry, micro computed tomography (microCT), 3-point bending, gene expression of different collagens, as well as serum markers of bone turnover. RESULTS The Mov13 mouse presented a lower bone strength and impaired material properties based on our results of 3-point bending and microCT analysis respectively. In contrast, no significant differences were found for all histomorphometric parameters. In addition, no significant differences in Col1a1 bone expression were present, but there was a significant lower P1NP concentration, a bone formation marker, measured in serum. Furthermore, bone tissue of Mov13 mice presented significantly higher expression of collagens (Col1a2, Col5a1 and Col5a2), and bone metabolism markers (Bglap, Fgf23, Smad7, Edn1 and Eln) compared to WT. Finally, we measured a significantly lower Col1a1 expression in heart and skin tissue and also determined a higher expression of other collagens in the heart tissue. CONCLUSION Although we did not detect a significant reduction in Col1a1 expression in the bone tissue, a change in bone structure and reduction in bone strength was noted. Regrettably, the variability of the bone phenotype and the appearance of severe lymphoma in adult Mov13 mice, does not favor their use for the testing of new long-term drug studies. As such, a new HI OI type 1 mouse model is urgently needed.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Traumatology and Orthopeadics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Lisanne E. Wisse
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marelise W. Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Gerard Pals
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Dimitra Micha,
| |
Collapse
|
6
|
Damian LO, Miclea D, Vulturar R, Crăciun A. Osteogenesis imperfecta and rheumatoid arthritis: connective issues. Osteoporos Int 2022; 33:2237-2239. [PMID: 35984463 DOI: 10.1007/s00198-022-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coexistence of osteogenesis imperfecta and inflammatory arthritis has been very rarely described. Nevertheless, systemic inflammation has been found in osteogenesis imperfecta. The COL1A1 mutations may affect collagen synthesis as well as post-translational modifications, extracellular matrix interactions, and receptor-mediated signaling. Major collagen binding ligands forming the interactome, such as cytokines, cell adhesion molecules, matrix metalloproteinases, proteoglycans, and other molecules, are autoimmunity targets involved in rheumatoid arthritis pathogenesis. Cross-talk between bone remodeling and inflammatory pathways involving osteoclasts is important in osteogenesis imperfecta and rheumatoid arthritis. In osteogenesis imperfecta, the structural abnormalities and repeated traumatism, including fractures, could activate locally the innate immunity and trigger arthritis, similar to post-traumatic arthritis. Currently, the therapy of osteogenesis imperfecta is a suboptimally met need. Understanding the complex putative pathogenic links between osteogenesis imperfecta and inflammatory arthritis could hopefully lead to new therapeutic targets. Raising awareness regarding a possible association between osteogenesis imperfecta and arthritis could help improve the quality of life in these patients.
Collapse
Affiliation(s)
- Laura Otilia Damian
- Rheumatology Dept, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor St, 400006, Cluj-Napoca-Napoca, Romania.
- CMI Reumatologie Dr Damian, 6-8 Petru Maior St, 400002, Cluj-Napoca-Napoca, Romania.
| | - Diana Miclea
- Department of Medical Genetics, Emergency Pediatric Hospital, Cluj-Napoca-Napoca, Romania
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St, 400294, Cluj-Napoca-Napoca, Romania
| | - Alexandra Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
| |
Collapse
|
7
|
Kang IH, Baliga UK, Chatterjee S, Chakraborty P, Choi S, Buchweitz N, Li H, Wu Y, Yao H, Mehrotra S, Mehrotra M. Quantitative increase in T regulatory cells enhances bone remodeling in osteogenesis imperfecta. iScience 2022; 25:104818. [PMID: 36034228 PMCID: PMC9400089 DOI: 10.1016/j.isci.2022.104818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by repeated bone fractures. Recent studies have shown that T lymphocytes and regulatory T cells (Tregs) regulate the functions of osteoclasts and osteoblasts, thus playing a role in bone turnover. We demonstrate an activated effector phenotype and higher secretion of pro-inflammatory cytokines, IFN-γ, and TNF-α in OI peripheral T cells as compared with wild-type (WT). Suppressive Tregs (spleen and thymus) were qualitatively similar, whereas there was a quantitative decrease in OI versus WT. Restoring Treg numbers by systemic transplantation in OI mice resulted in reduced T cell activation and effector cytokine secretion that correlated with significant improvements in tibial trabecular and cortical bone parameters and stiffness of femur, along with increased osteoblast mineralization and decreased osteoclast numbers. Therefore, Tregs can dampen the pro-inflammatory environment and enhance bone remodeling in OI mice. Thus, this study will be helpful in developing future autologous immunotherapy-based treatment modalities for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Uday K. Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan Buchweitz
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hong Li
- Depatment of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Jeon GW. Pathophysiology, classification, and complications of common asymptomatic thrombocytosis in newborn infants. Clin Exp Pediatr 2022; 65:182-187. [PMID: 34665959 PMCID: PMC8990953 DOI: 10.3345/cep.2021.00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
We frequently encounter newborn infants with thrombocytosis in the neonatal intensive care unit. However, neonatal thrombocytosis is not yet fully understood. Thrombocytosis is more frequently identified in newborns and young infants, notably more often in those younger than 2 years than in older children or adults. The production of megakaryocytes (megakaryopoiesis) and platelets (thrombopoiesis) is mainly regulated by thrombopoietin (TPO). Increased TPO levels during infection or inflammation can stimulate megakaryopoiesis, resulting in thrombopoiesis. TPO concentrations are higher in newborn infants than in adults. Levels increase after birth, peak on the second day after birth, and start decreasing at 1 month of age. Initial platelet counts at birth increase with gestational age. Thus, preterm infants have lower initial platelet counts at birth than late-preterm or term infants. Postnatal thrombocytosis is more frequently observed in preterm infants than in term infants. A high TPO concentration and low TPO receptor expression on platelets leading to elevated plasma-free TPO, increased sensitivity of megakaryocyte precursor cells to TPO, a decreased red blood cell count, and immaturity of platelet regulation are speculated to induce thrombocytosis in preterm infants. Thrombocytosis in newborn infants is considered a reactive process (secondary thrombocytosis) following infection, acute/chronic inflammation, or anemia. Thrombocytosis in newborn infants is benign, resolves spontaneously, and, unlike in adults, is rarely associated with hemorrhagic and thromboembolic complications.
Collapse
Affiliation(s)
- Ga Won Jeon
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
9
|
The Osteogenesis Imperfecta Type V Mutant BRIL/IFITM5 Promotes Transcriptional Activation of MEF2, NFATc, and NR4A in Osteoblasts. Int J Mol Sci 2022; 23:ijms23042148. [PMID: 35216266 PMCID: PMC8875491 DOI: 10.3390/ijms23042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function. To understand the function of BRIL and its OI type V mutant (MALEP BRIL) and whether they could activate signaling pathways in osteoblasts, we performed a luciferase reporter assay screen based on the activity of 26 transcription factors. When overexpressed in MC3T3-E1 and MLO-A5 cells, the MALEP BRIL activated the reporters dependent on MEF2, NFATc, and NR4A significantly more. Additional co-transfection experiments with MEF2C and NFATc1 and a number of their modulators (HDAC4, calcineurin, RCAN, FK506) confirmed the additive or synergistic activation of the pathways by MALEP, and suggested a coordinated regulation involving calcineurin. Endogenous levels of Nr4a members, as well as Ptgs2, were upregulated by MALEP BRIL. Y2H and co-immunoprecipitation indicated that BRIL interacted with CAML, but its contribution as the most upstream stimulator of the Ca2+-calcineurin-MEF2/NFATc cascade was not confirmed convincingly. Altogether the data presented provide the first ever readout to monitor for BRIL activity and suggest a potential gain-of-function causative effect for MALEP BRIL in OI type V, leading to perturbed signaling events and gene expression.
Collapse
|
10
|
Abstract
Osteogenesis imperfecta (OI) is a disease characterised by altered bone tissue material properties together with abnormal micro and macro-architecture and thus bone fragility, increased bone turnover and hyperosteocytosis. Increasingly appreciated are the soft tissue changes, sarcopenia in particular. Approaches to treatment are now multidisciplinary, with bisphosphonates having been the primary pharmacological intervention over the last 20 years. Whilst meta-analyses suggest that anti-fracture efficacy across the life course is equivocal, there is good evidence that for children bisphosphonates reduce fracture risk, increase vertebral size and improve vertebral shape, as well as improving motor function and mobility. The genetics of OI continues to provide insights into the molecular pathogenesis of the disease, although the pathophysiology is less clear. The complexity of the multi-scale interactions of bone tissue with cellular function are gradually being disentangled, but the fundamental question of why increased tissue brittleness should be associated with so many other changes is unclear; ER stress, pro-inflammatory cytokines, accelerated senesence and altered matrix component release might all contribute, but a unifying hypothesis remains elusive. New approaches to therapy are focussed on increasing bone mass, following the paradigm established by the treatment of postmenopausal osteoporosis. For adults, this brings the prospect of restoring previously lost bone - for children, particularly at the severe end of the spectrum, the possibility of further reducing fracture frequency and possibly altering growth and long term function are attractive. The alternatives that might affect tissue brittleness are autophagy enhancement (through the removal of abnormal type I collagen aggregates) and stem cell transplantation - both still at the preclinical stage of assessment. Preclinical assessment is not supportive of targeting inflammatory pathways, although understanding why TGFb signalling is increased, and whether that presents a treatment target in OI, remains to be established.
Collapse
Affiliation(s)
- Fawaz Arshad
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK.
| |
Collapse
|
11
|
Zhytnik L, Maasalu K, Reimann E, Märtson A, Kõks S. RNA sequencing analysis reveals increased expression of interferon signaling genes and dysregulation of bone metabolism affecting pathways in the whole blood of patients with osteogenesis imperfecta. BMC Med Genomics 2020; 13:177. [PMID: 33228694 PMCID: PMC7684725 DOI: 10.1186/s12920-020-00825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder in which the patients suffer from numerous fractures, skeletal deformities and bluish sclera. The disorder ranges from a mild form to severe and lethal cases. The main objective of this pilot study was to compare the blood transcriptional landscape of OI patients with COL1A1 pathogenic variants and their healthy relatives, in order to find out different gene expression and dysregulated molecular pathways in OI. METHODS We performed RNA sequencing analysis of whole blood in seven individuals affected with different OI severity and their five unaffected relatives from the three families. The data was analyzed using edgeR package of R Bioconductor. Functional profiling and pathway analysis of the identified differently expressed genes was performed with g:GOSt and MinePath web-based tools. RESULTS We identified 114 differently expressed genes. The expression of 79 genes was up-regulated, while 35 genes were down-regulated. The functional analysis identified a presence of dysregulated interferon signaling pathways (IFI27, IFITM3, RSAD12, GBP7). Additionally, the expressions of the genes related to extracellular matrix organization, Wnt signaling, vitamin D metabolism and MAPK-ERK 1/2 pathways were also altered. CONCLUSIONS The current pilot study successfully captured the differential expression of inflammation and bone metabolism pathways in OI patients. This work can contribute to future research of transcriptional bloodomics in OI. Transcriptional bloodomics has a strong potential to become a major contributor to the understanding of OI pathological mechanisms, the discovery of phenotype modifying factors, and the identification of new therapeutic targets. However, further studies in bigger cohorts of OI patients are needed to confirm the findings of the current work.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
12
|
Damian LO, Zmarandache CD, Vele P, Albu A, Belizna C, Crăciun A. Osteogenesis imperfecta and rheumatoid arthritis: is there a link? Arch Osteoporos 2020; 15:40. [PMID: 32144589 DOI: 10.1007/s11657-020-0681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We present the cases of a mother and daughter with osteogenesis imperfecta, also diagnosed later with rheumatoid arthritis. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to osteogenesis imperfecta. Exploring joint inflammation in this setting could help ease the disease burden. PURPOSE Osteogenesis imperfecta (OI) is a rare hereditary disease evolving with recurrent fractures upon minor trauma, blue sclerae, and hearing loss. Although inflammation was not generally considered a feature of the disease, systemic inflammation was recently reported in children with OI and in murine models of OI. METHOD We present the cases of a mother and a daughter with OI, without a personal or family history of autoimmune diseases, who were also diagnosed with rheumatoid arthritis seropositive for anti-cyclic citrullinated peptide autoantibodies and rheumatoid factor. RESULTS The genetic tests identified in both patients a deletion in COL1A1 gene (c.3399del, p.Ala1134Profs*105), not previously reported, not present in population databases, creating a premature translational stop signal in the COL1A1 gene in the collagen I major ligand binding region 3. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to OI. Possible pathogenic links between OI and RA are discussed. CONCLUSION The prevalence of joint inflammation in OI is unknown and may be underestimated. As musculoskeletal involvement affects the quality of life in most OI patients, exploring this relation may help ease the disease burden.
Collapse
Affiliation(s)
- Laura Otilia Damian
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania. .,CMI Reumatologie Dr Damian, 6-8 Petru Maior Str., 400002, Cluj-Napoca, Romania.
| | - Carmen-Delia Zmarandache
- Radiology Department, Emergency Clinical County Hospital Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Paulina Vele
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania
| | - Adriana Albu
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,2nd Internal Medicine Department, Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Cristina Belizna
- Centre Vasculaire et de la Coagulation CHU (Centre Hospitalier Universitaire), Angers 4 rue Larrey, 49000, Angers, France
| | - Alexandra Crăciun
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,Molecular Sciences Department, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. Int J Mol Sci 2019; 20:ijms20215467. [PMID: 31684035 PMCID: PMC6862454 DOI: 10.3390/ijms20215467] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|