1
|
Lagacé M, Tam EWY. Neonatal dysglycemia: a review of dysglycemia in relation to brain health and neurodevelopmental outcomes. Pediatr Res 2024; 96:1429-1437. [PMID: 38972961 DOI: 10.1038/s41390-024-03411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024]
Abstract
Neonatal dysglycemia has been a longstanding interest of research in neonatology. Adverse outcomes from hypoglycemia were recognized early but are still being characterized. Premature infants additionally introduced and led the reflection on the importance of neonatal hyperglycemia. Cohorts of infants following neonatal encephalopathy provided further information about the impacts of hypoglycemia and, more recently, highlighted hyperglycemia as a central concern for this population. Innovative studies exposed the challenges of management of neonatal glycemic levels with a "u-shape" relationship between dysglycemia and adverse neurological outcomes. Lately, glycemic lability has been recognized as a key factor in adverse neurodevelopmental outcomes. Research and new technologies, such as MRI and continuous glucose monitoring, offered novel insight into neonatal dysglycemia. Combining clinical, physiological, and epidemiological data allowed the foundation of safe operational definitions, including initiation of treatment, to delineate neonatal hypoglycemia as ≤47 mg/dL, and >150-180 mg/dL for neonatal hyperglycemia. However, questions remain about the appropriate management of neonatal dysglycemia to optimize neurodevelopmental outcomes. Research collaborations and clinical trials with long-term follow-up and advanced use of evolving technologies will be necessary to continue to progress the fascinating world of neonatal dysglycemia and neurodevelopment outcomes. IMPACT STATEMENT: Safe operational definitions guide the initiation of treatment of neonatal hypoglycemia and hyperglycemia. Innovative studies exposed the challenges of neonatal glycemia management with a "u-shaped" relationship between dysglycemia and adverse neurological outcomes. The importance of glycemic lability is also being recognized. However, questions remain about the optimal management of neonatal dysglycemia to optimize neurodevelopmental outcomes. Research collaborations and clinical trials with long-term follow-up and advanced use of evolving technologies will be necessary to progress the fascinating world of neonatal dysglycemia and neurodevelopment outcomes.
Collapse
Affiliation(s)
- Micheline Lagacé
- Faculty of Medicine, Clinician Investigator Program, University of British Columbia, Vancouver, BC, Canada
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Emily W Y Tam
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| |
Collapse
|
3
|
Damien J, Vannasing P, Tremblay J, Petitpas L, Marandyuk B, Balasingam T, El Jalbout R, Paquette N, Donofrio G, Birca A, Gallagher A, Pinchefsky EF. Relationship between EEG spectral power and dysglycemia with neurodevelopmental outcomes after neonatal encephalopathy. Clin Neurophysiol 2024; 163:160-173. [PMID: 38754181 DOI: 10.1016/j.clinph.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/28/2024] [Accepted: 03/23/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE We investigated how electroencephalography (EEG) quantitative measures and dysglycemia relate to neurodevelopmental outcomes following neonatal encephalopathy (NE). METHODS This retrospective study included 90 neonates with encephalopathy who received therapeutic hypothermia. EEG absolute spectral power was calculated during post-rewarming and 2-month follow-up. Measures of dysglycemia (hypoglycemia, hyperglycemia, and glycemic lability) and glucose variability were computed for the first 48 h of life. We evaluated the ability of EEG and glucose measures to predict neurodevelopmental outcomes at ≥ 18 months, using logistic regressions (with area under the receiver operating characteristic [AUROC] curves). RESULTS The post-rewarming global delta power (average all electrodes), hyperglycemia and glycemic lability predicted moderate/severe neurodevelopmental outcome separately (AUROC = 0.8, 95%CI [0.7,0.9], p < .001) and even more so when combined (AUROC = 0.9, 95%CI [0.8,0.9], p < .001). After adjusting for NE severity and magnetic resonance imaging (MRI) brain injury, only global delta power remained significantly associated with moderate/severe neurodevelopmental outcome (odds ratio [OR] = 0.9, 95%CI [0.8,1.0], p = .04), gross motor delay (OR = 0.9, 95%CI [0.8,1.0], p = .04), global developmental delay (OR = 0.9, 95%CI [0.8,1.0], p = .04), and auditory deficits (OR = 0.9, 95%CI [0.8,1.0], p = .03). CONCLUSIONS In NE, global delta power post-rewarming was predictive of outcomes at ≥ 18 months. SIGNIFICANCE EEG markers post-rewarming can aid prediction of neurodevelopmental outcomes following NE.
Collapse
Affiliation(s)
- Janie Damien
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Phetsamone Vannasing
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Julie Tremblay
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Laurence Petitpas
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Bohdana Marandyuk
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Thameya Balasingam
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Ramy El Jalbout
- Department of Radiology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Natacha Paquette
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Gianluca Donofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Ala Birca
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Anne Gallagher
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Elana F Pinchefsky
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| |
Collapse
|
4
|
Rattanasakol T, Kitsommart R. Factors associated with neonatal hyperinsulinemic hypoglycemia, a case-control study. J Pediatr Endocrinol Metab 2024; 37:243-249. [PMID: 38235510 DOI: 10.1515/jpem-2023-0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVES We aimed to identify perinatal risk factors associated with hyperinsulinemic hypoglycemia in neonates. Secondary objectives included an examination of clinical and biochemical characteristics at the time of diagnosis and an exploration of the duration of diazoxide therapy. METHODS A case-control study was conducted, involving individual chart reviews of inborn infants diagnosed with hyperinsulinemic hypoglycemia (the HH group) between 2014 and 2021. These cases were paired with controls (the non-HH group) belonging to the same gestational age (GA) strata who did not exhibit HH or only had transient postnatal hypoglycemia. RESULTS A total of 52 infants with HH were matched with corresponding controls. The mean GA in the HH group was 34.4 ± 3.1 weeks. Notably, the HH group exhibited lower mean minimum plasma glucose (PG) levels and required higher glucose infusion rates in comparison to the non-HH group (26.5 ± 15.6 vs. 49.1 ± 37.7 mg/dL and 12.9 ± 3.8 vs. 5.7 ± 2.1 mg/kg/min, respectively; p<0.001 for both). After adjusting for potential confounding factors, only two variables, fetal growth restriction (FGR) and neonatal sepsis, demonstrated significant associations with HH (adjusted odds ratio [95 % confidence interval]: 8.1 [2.1-31.0], p=0.002 and 6.3 [1.9-21.4], p=0.003, respectively). The median duration of diazoxide therapy for the HH group was 4 months. CONCLUSIONS FGR and neonatal sepsis emerged as notable risk factors for HH. These infants exhibited lower PG levels and necessitated higher glucose infusion rates compared to their non-HH counterparts. Importantly, a substantial proportion of the HH group received diazoxide therapy, with a median treatment duration of 4 months.
Collapse
Affiliation(s)
- Thanaporn Rattanasakol
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ratchada Kitsommart
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|