1
|
Rodriguez-Navarro C, Elert K, Ibañez-Velasco A, Monasterio-Guillot L, Andres M, Sivera F, Pascual E, Ruiz-Agudo E. Unraveling the pathological biomineralization of monosodium urate crystals in gout patients. Commun Biol 2024; 7:828. [PMID: 38972919 PMCID: PMC11228021 DOI: 10.1038/s42003-024-06534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.
Collapse
Grants
- PID2021.125305NB.I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- B-RNM-574-UGR20 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- RNM-179 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- UCE-PP2016-05 Universidad de Granada (University of Granada)
Collapse
Affiliation(s)
- Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain.
| | - Kerstin Elert
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
- Escuela de Estudios Arabes, Consejo Superior de Investigaciones Científicas (EEA-CSIC), C. Chapiz 22, 18010, Granada, Spain
| | - Aurelia Ibañez-Velasco
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Luis Monasterio-Guillot
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Mariano Andres
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research, Av. Pintor Baeza s/n, 03010, Alicante, Spain
| | - Francisca Sivera
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Elda General University Hospital, Carretera Elda-Sax s/n, 03600, Elda, Spain
| | - Eliseo Pascual
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research, Av. Pintor Baeza s/n, 03010, Alicante, Spain
| | - Encarnación Ruiz-Agudo
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| |
Collapse
|
2
|
Wang Q, Chen B, Zhang Z, Tang X, Li Y. Correlations of characteristics with tissue involvement in knee gouty arthritis: Magnetic resonance imaging analysis. Heliyon 2024; 10:e31888. [PMID: 38841465 PMCID: PMC11152737 DOI: 10.1016/j.heliyon.2024.e31888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Objective This study investigates the MRI features of knee gouty arthritis (KGA), examines its relationship with the extent of tissue involvement, and assesses whether risk factors can predict KGA. Materials and methods Patients diagnosed with KGA underwent MRI examinations, and two independent observers retrospectively analyzed data from 44 patients (49 knees). These patients were divided into mild and severe groups based on tissue involvement observed during arthroscopy. MRI features were summarized, and the intraclass correlation coefficient evaluated interobserver reproducibility. Single-factor analysis compared clinical indicators and MRI features between groups, while Cramer's V coefficient assessed correlations. Multivariate logistic regression identified predictors of tissue involvement extent, and a ROC curve evaluated diagnostic performance. Results Among 49 knees, 18 had mild and 31 had severe tissue involvement. Key MRI features included ligament sketch-like changes, meniscal urate deposition, irregularly serrated cartilage changes, low-signal signs within joint effusion, synovial proliferation, Hoffa's fat pad synovitis, gouty tophi, bone erosion, and bone marrow edema. The interobserver reliability of the MRI features was good. Significant differences (P < 0.05) were observed between the groups for anterior cruciate ligament (ACL) sketch-like changes, Hoffa's fat pad synovitis, and gouty tophi. ACL sketch-like changes (r = 0.309), Hoffa's fat pad synovitis (r = 0.309), and gouty tophi (r = 0.408) were positively correlated with the extent of tissue involvement (P < 0.05). ACL sketch-like changes (OR = 9.019, 95 % CI: 1.364-61.880), Hoffa's fat pad synovitis (OR = 6.472, 95 % CI: 1.041-40.229), and gouty tophi (OR = 5.972, 95 % CI: 1.218-29.276) were identified as independent predictors of tissue involvement extent (P < 0.05). The area under the ROC curve was 0.862, with a sensitivity of 67.70 %, specificity of 94.40 %, and accuracy of 79.14 %. Conclusion This comprehensive analysis of MRI features identifies ligament sketch-like changes, meniscal urate deposition, and low-signal signs within joint effusion as characteristic MRI manifestations of KGA. Irregular cartilage changes are valuable for differential diagnosis in young and middle-aged patients. ACL sketch-like changes, Hoffa's fat pad synovitis, and gouty tophi correlate with tissue involvement severity and are critical in predicting and assessing the extent of tissue involvement in KGA.
Collapse
Affiliation(s)
- Qingshuai Wang
- Department of Sports Medicine Arthroscopy, Second Hospital, Jilin University, Changchun, 130041, China
| | - Bo Chen
- Department of Sports Medicine Arthroscopy, Second Hospital, Jilin University, Changchun, 130041, China
| | - Zhicheng Zhang
- Department of Sports Medicine Arthroscopy, Second Hospital, Jilin University, Changchun, 130041, China
| | - Xiongfeng Tang
- Department of Sports Medicine Arthroscopy, Second Hospital, Jilin University, Changchun, 130041, China
| | - Yingzhi Li
- Department of Sports Medicine Arthroscopy, Second Hospital, Jilin University, Changchun, 130041, China
| |
Collapse
|
3
|
Ma L, Luo K, Liu Z, Ji M. Stain-Free Histopathology with Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:7907-7925. [PMID: 38713830 DOI: 10.1021/acs.analchem.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Affiliation(s)
- Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Cao S, Hu Y. Interpretable machine learning framework to predict gout associated with dietary fiber and triglyceride-glucose index. Nutr Metab (Lond) 2024; 21:25. [PMID: 38745171 PMCID: PMC11092237 DOI: 10.1186/s12986-024-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Gout prediction is essential for the development of individualized prevention and treatment plans. Our objective was to develop an efficient and interpretable machine learning (ML) model using the SHapley Additive exPlanation (SHAP) to link dietary fiber and triglyceride-glucose (TyG) index to predict gout. METHODS Using datasets from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) population to study dietary fiber, the TyG index was used to predict gout. After evaluating the performance of six ML models and selecting the Light Gradient Boosting Machine (LGBM) as the optimal algorithm, we interpret the LGBM model for predicting gout using SHAP and reveal the decision-making process of the model. RESULTS An initial survey of 70,190 participants was conducted, and after a gradual exclusion process, 12,645 cases were finally included in the study. Selection of the best performing LGBM model for prediction of gout associated with dietary fiber and TyG index (Area under the ROC curve (AUC): 0.823, 95% confidence interval (CI): 0.798-0.848, Accuracy: 95.3%, Brier score: 0.077). The feature importance of SHAP values indicated that age was the most important feature affecting the model output, followed by uric acid (UA). The SHAP values showed that lower dietary fiber values had a more pronounced effect on the positive prediction of the model, while higher values of the TyG index had a more pronounced effect on the positive prediction of the model. CONCLUSION The interpretable LGBM model associated with dietary fiber and TyG index showed high accuracy, efficiency, and robustness in predicting gout. Increasing dietary fiber intake and lowering the TyG index are beneficial in reducing the potential risk of gout.
Collapse
Affiliation(s)
- Shunshun Cao
- Pediatric Endocrinology, Genetics and Metabolism, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yangyang Hu
- Reproductive Medicine Center, Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
5
|
Cao S, Hu Y. Creating machine learning models that interpretably link systemic inflammatory index, sex steroid hormones, and dietary antioxidants to identify gout using the SHAP (SHapley Additive exPlanations) method. Front Immunol 2024; 15:1367340. [PMID: 38751428 PMCID: PMC11094226 DOI: 10.3389/fimmu.2024.1367340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background The relationship between systemic inflammatory index (SII), sex steroid hormones, dietary antioxidants (DA), and gout has not been determined. We aim to develop a reliable and interpretable machine learning (ML) model that links SII, sex steroid hormones, and DA to gout identification. Methods The dataset we used to study the relationship between SII, sex steroid hormones, DA, and gout was from the National Health and Nutrition Examination Survey (NHANES). Six ML models were developed to identify gout by SII, sex steroid hormones, and DA. The seven performance discriminative features of each model were summarized, and the eXtreme Gradient Boosting (XGBoost) model with the best overall performance was selected to identify gout. We used the SHapley Additive exPlanation (SHAP) method to explain the XGBoost model and its decision-making process. Results An initial survey of 20,146 participants resulted in 8,550 being included in the study. Selecting the best performing XGBoost model associated with SII, sex steroid hormones, and DA to identify gout (male: AUC: 0.795, 95% CI: 0.746- 0.843, accuracy: 98.7%; female: AUC: 0.822, 95% CI: 0.754- 0.883, accuracy: 99.2%). In the male group, The SHAP values showed that the lower feature values of lutein + zeaxanthin (LZ), vitamin C (VitC), lycopene, zinc, total testosterone (TT), vitamin E (VitE), and vitamin A (VitA), the greater the positive effect on the model output. In the female group, SHAP values showed that lower feature values of E2, zinc, lycopene, LZ, TT, and selenium had a greater positive effect on model output. Conclusion The interpretable XGBoost model demonstrated accuracy, efficiency, and robustness in identifying associations between SII, sex steroid hormones, DA, and gout in participants. Decreased TT in males and decreased E2 in females may be associated with gout, and increased DA intake and decreased SII may reduce the potential risk of gout.
Collapse
Affiliation(s)
- Shunshun Cao
- Pediatric Endocrinology, Genetics and Metabolism, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Hu
- Reproductive Medicine Center, Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
7
|
Xu H, Qin H, Hua Y, Dalbeth N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann Rheum Dis 2023; 82:1511-1515. [PMID: 37586760 DOI: 10.1136/ard-2023-224679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Epidemiological and imaging findings indicate that gout frequently affects damaged joints. Recent studies suggest that the relationship between gout and joint damage may be more complex than a simple unidirectional link and that joint damage may promote the development of gout at affected sites. In this article, we review the clinical associations and recent laboratory research identifying events in the setting of osteoarthritis or joint injury that can alter the intraarticular microenvironment and locally regulate monosodium urate crystallisation and deposition or amplify the inflammatory response to deposited crystals. This includes cartilage matrix proteins or fibres released into the articular space that accelerates the crystallisation process, as well as the lack of lubricin and fibroblast priming that enhances the immune response towards the deposited crystals. These findings provide new insights into gout pathogenesis and offer a possible explanation for the site preference of gout in the damaged joint.
Collapse
Affiliation(s)
- HanLin Xu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Hengwei Qin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - YingHui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nicola Dalbeth
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Li D, Yuan S, Deng Y, Wang X, Wu S, Chen X, Li Y, Ouyang J, Lin D, Quan H, Fu X, Li C, Mao W. The dysregulation of immune cells induced by uric acid: mechanisms of inflammation associated with hyperuricemia and its complications. Front Immunol 2023; 14:1282890. [PMID: 38053999 PMCID: PMC10694226 DOI: 10.3389/fimmu.2023.1282890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Changes in lifestyle induce an increase in patients with hyperuricemia (HUA), leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is a strong inflammatory response in the process of HUA, while dysregulation of immune cells, including monocytes, macrophages, and T cells, plays a crucial role in the inflammatory response. Recent studies have indicated that urate has a direct impact on immune cell populations, changes in cytokine expression, modifications in chemotaxis and differentiation, and the provocation of immune cells by intrinsic cells to cause the aforementioned conditions. Here we conducted a detailed review of the relationship among uric acid, immune response, and inflammatory status in hyperuricemia and its complications, providing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Delun Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Siyu Yuan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaowan Wang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shouhai Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xuesheng Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Yimeng Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Jianting Ouyang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Danyao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Haohao Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Xinwen Fu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| |
Collapse
|
9
|
Xie L, Li Z, Chen Z, Li M, Tao J. ITGB1 alleviates osteoarthritis by inhibiting cartilage inflammation and apoptosis via activating cAMP pathway. J Orthop Surg Res 2023; 18:849. [PMID: 37941009 PMCID: PMC10634155 DOI: 10.1186/s13018-023-04342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE We aimed to screen novel biomarkers for osteoarthritis (OA) using bioinformatic methods and explore its regulatory mechanism in OA development. METHODS Differentially expressed genes were screened out from GSE98918 and GSE82107 datasets. Protein-protein interaction network and enrichment analysis were employed to search for hub gene and regulatory pathway. Hematoxylin-eosin, Safranin O-Fast green staining, and immunohistochemistry were performed to assess pathological damage. TNF-α, IL-1β, and IL-6 concentrations were determined by enzyme-linked immunosorbent assay. Real-time quantitative PCR was applied to verify expression of hub genes in OA model. The expression of key protein and pathway proteins was determined by western blot. Furthermore, Cell Counting Kit-8 and flow cytometry were conducted to explore the role of hub gene in chondrocytes. RESULTS We identified 6 hub genes of OA, including ITGB1, COL5A1, COL1A1, THBS2, LAMA1, and COL12A1, with high prediction value. ITGB1 was screened as a pivotal regulator of OA and cAMP pathway was selected as the key regulatory pathway. ITGB1 was down-regulated in OA model. ITGB1 overexpression attenuated pathological damage and apoptosis in OA rats with the reduced levels of TNF-α, IL-1β and IL-6. ITGB1 overexpression activated cAMP pathway in vivo and vitro models. In vitro model, ITGB1 overexpression promoted cell viability, while inhibited apoptosis. ITGB1 overexpression also caused a decrease of TNF-α, IL-1β, and IL-6 concentrations. cAMP pathway inhibitor reversed the positive effect of ITGB1 on OA cell model. CONCLUSION ITGB1 is a novel biomarker for OA, which inhibits OA development by activating the cAMP pathway.
Collapse
Affiliation(s)
- Lifeng Xie
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Zhengnan Li
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), No.16, MeiGuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Zhijun Chen
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Mingzhang Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Jun Tao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China.
| |
Collapse
|
10
|
Chen Y, Liu J, Li Y, Cong C, Hu Y, Zhang X, Han Q. The Independent Value of Neutrophil to Lymphocyte Ratio in Gouty Arthritis: A Narrative Review. J Inflamm Res 2023; 16:4593-4601. [PMID: 37868831 PMCID: PMC10588658 DOI: 10.2147/jir.s430831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Since the incidence of gouty arthritis (GA) exhibits yearly increases, accurate assessment and early treatment have significant values for improving disease conditions and monitoring prognosis. Neutrophil to lymphocyte ratio (NLR) is a common indicator in blood routine, which has the characteristics of easy access and low cost. In recent years, NLR has been proven to be an effective indicator for guiding the diagnosis, treatment, and prognosis of various diseases. Moreover, NLR has varying degrees of relationship with various inflammatory biomarkers, which can affect and reflect the inflammatory response in the body. This paper reviews the independent value of NLR for GA and its underlying molecular pathological mechanisms, intending to contribute to the further application of NLR.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- National Traditional Chinese Medicine Inheritance and Innovation Center, Hefei, Anhui Province, People’s Republic of China
| | - Yang Li
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Chengzhi Cong
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yuedi Hu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xianheng Zhang
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Qi Han
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
11
|
Wang Q, Qiu H. Deubiquitinase USP16 induces gouty arthritis via Drp1-dependent mitochondrial fission and NLRP3 inflammasome activation. Arthritis Res Ther 2023; 25:126. [PMID: 37488647 PMCID: PMC10367261 DOI: 10.1186/s13075-023-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Gouty arthritis is the most frequently diagnosed inflammatory arthritis worldwide. Dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, contributes to various inflammatory disorders via activating NLRP3 inflammasome. However, the biological role of Drp1 in gouty arthritis remains undefined. METHODS A mouse model of monosodium urate (MSU)-induced gouty arthritis and MSU-stimulated macrophages were established as in vivo and in vitro models, respectively. Histological changes were assessed by H&E and IHC analysis. RT-qPCR and western blot were used to detect the expression of Drp1 and the key molecules in joint tissues and macrophages. Cytokine secretion was measured by ELISA assay, and antioxidant enzymes activities and LDH release were monitored using commercial kits. Mitochondrial structure and functions were assessed by transmission electron microscopy (TEM) and MitoSOX staining. Co-IP and GST pull-down assay were used to detect the direct interaction between USP16 and Drp1, as well as the ubiquitination of Drp1. RESULTS Drp1 was elevated in MSU-induced gouty arthritis model, and it induced gouty arthritis via NF-κB pathway and NLRP3 inflammasome activation. In addition, Drp1 activated NF-κB/NLRP3 signaling via modulating mitochondrial fission. Mechanistically, USP16 mediated deubiquitination and stabilization of Drp1 through its direct interaction with Drp1. Functional studies further showed that USP16 was highly expressed in MSU-stimulated macrophages and induced gouty arthritis via Drp1-dependent NLRP3 inflammasome activation. CONCLUSION Deubiquitinase USP16 induced gouty arthritis via Drp1-dependent mitochondrial fission and NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Qingdong Wang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Heilongjiang Province, Jiamusi, 154000, People's Republic of China
| | - Hongbin Qiu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Heilongjiang Province, Jiamusi, 154000, People's Republic of China.
| |
Collapse
|
12
|
Ge X, Zhang Y, Fang R, Zhao J, Huang J. Exploring the inhibition mechanism of interleukin-1-beta in gouty arthritis by polygonum cuspidatum using network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e34396. [PMID: 37478249 PMCID: PMC10662804 DOI: 10.1097/md.0000000000034396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Polygonum cuspidatum (Huzhang, HZ) is one of the commonly used traditional Chinese medicines for treating gouty arthritis (GA), but the specific mechanism is not clear. This study employed network pharmacology and molecular docking techniques to examine the molecular mechanisms underlying the therapeutic effects of HZ on GA. The network pharmacology approach, including active ingredient and target screening, drug-compound-target-disease network construction, protein-protein interaction (PPI) networks, enrichment analysis, and molecular docking, was used to explore the mechanism of HZ against GA. Ten active ingredients of HZ were predicted to interact with 191 targets, 14 of which interact with GA targets. Network pharmacology showed that quercetin, physovenine, luteolin, and beta-sitosterol are the core components of HZ, and IL (interleukin)-1β, IL-6, and tumor necrosis factor (TNF) are the core therapeutic targets. The mechanism of HZ in GA treatment was shown to be related to the IL-17 signaling pathway, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway, and is involved in the inflammatory response, positive regulation of gene expression, cellular response to lipopolysaccharide, and other biological processes. Molecular docking showed that all four core compounds had good binding properties to IL-1β, with luteolin and beta-sitosterol showing better docking results than anakinra, suggesting that they could be used as natural IL-1β inhibitors in further experimental studies. The mechanism of action of HZ against GA has multi-target and multi-pathway characteristics, which provides an important theoretical basis for the study of the active ingredients of HZ as natural IL-1β inhibitors.
Collapse
Affiliation(s)
- Xiao Ge
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhang
- Intensive Care Union, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rulu Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaojiao Zhao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiyong Huang
- Department of Immunology and Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Qiao P, Sun Y, Wang Y, Lin S, An Y, Wang L, Liu J, Huang Y, Yang B, Zhou H. Activation of NRF2 Signaling Pathway Delays the Progression of Hyperuricemic Nephropathy by Reducing Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051022. [PMID: 37237889 DOI: 10.3390/antiox12051022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperuricemia (HUA)-induced oxidative stress is a crucial contributor to hyperuricemic nephropathy (HN), but the molecular mechanisms underlying the disturbed redox homeostasis in kidneys remain elusive. Using RNA sequencing, together with biochemical analyses, we found that nuclear factor erythroid 2-related factor 2 (NRF2) expression and nuclear localization levels were increased in early HN progression and then gradually declined below the baseline level. We identified the impaired activity of the NRF2-activated antioxidant pathway as a driver of oxidative damage in HN progression. Through nrf2 deletion, we further confirmed aggravated kidney damage in nrf2 knockout HN mice compared with HN mice. In contrast, the pharmacological agonist of NRF2 improved kidney function and alleviated renal fibrosis in mice. Mechanistically, the activation of NRF2 signaling reduced oxidative stress by restoring mitochondrial homeostasis and reducing NADPH oxidase 4 (NOX4) expression in vivo or in vitro. Moreover, the activation of NRF2 promoted the expression levels of heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO1) and enhanced the antioxidant capacity of cells. Furthermore, the activation of NRF2 ameliorated renal fibrosis in HN mice through the downregulation of the transforming growth factor-beta 1 (TGF-β1) signaling pathway and ultimately delayed the progression of HN. Collectively, these results suggested NRF2 as a key regulator in improving mitochondrial homeostasis and fibrosis in renal tubular cells by reducing oxidative stress, upregulating the antioxidant signaling pathway, and downregulating the TGF-β1 signaling pathway. The activation of NRF2 represents a promising strategy to restore redox homeostasis and combat HN.
Collapse
Affiliation(s)
- Panshuang Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yiming Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jihan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yajun Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of the Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Xu H, Li S, Cao L, Zhu X, Xue Y, Huang Y, Hua Y. The application of a novel hydrodynamic cavitation device to debride intra-articular monosodium urate crystals. BMC Surg 2023; 23:35. [PMID: 36765342 PMCID: PMC9912527 DOI: 10.1186/s12893-023-01929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Efficient and complete debridement of intra-articular deposits of monosodium urate crystals is rarely achieved by existing arthroscopic tools such as shavers or radiofrequency ablation, while cavitation technology represents a prospective solution for the non-invasive clearance of adhesions at intra-articular interfaces. METHODS Simulation modeling was conducted to identify the optimal parameters for the device, including nozzle diameters and jet pressures. Gouty arthritis model was established in twelve rats that were equally and randomly allocated into a cavitation debridement group or a curette debridement group. A direct injection nozzle was designed and then applied on animal model to verify the effect of the cavitation jet device on the removal of crystal deposits. Image analysis was performed to evaluate the clearance efficiency of the cavitation device and the pathological features of surrounding tissue were collected in all groups. RESULTS To maximize cavitation with the practical requirements of the operation, an experimental rig was applied, including a 1 mm direct injection nozzle with a jet pressure of 2.0 MPa at a distance of 20 mm and a nitrogen bottle as high-pressure gas source. With regards to feasibility of the device, the clearance rates in the cavitation group were over 97% and were significantly different from the control group. Pathological examination showed that the deposition of monosodium urate crystals was removed completely while preserving the normal structure of the collagen fibers. CONCLUSIONS We developed a promising surgical device to efficiently remove intra-articular deposits of monosodium urate crystals. The feasibility and safety profile of the device were also verified in a rat model. Our findings provide a non-invasive method for the intraoperative treatment of refractory gouty arthritis.
Collapse
Affiliation(s)
- Hanlin Xu
- grid.411405.50000 0004 1757 8861Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Shengkun Li
- grid.411405.50000 0004 1757 8861Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Ling Cao
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiaoxia Zhu
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yu Xue
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yu Huang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Institute of Vibration Shock and Noise, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|