1
|
Zuckerman BP, Yang Z, Warwick A, Wincup C, Russell MD, Galloway JB, Zhao SS. Association between interleukin-12 p40 subunit and risk of primary Sjögren's disease: a Mendelian randomization study. Rheumatology (Oxford) 2025; 64:2295-2299. [PMID: 39222420 DOI: 10.1093/rheumatology/keae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES IL-12 signalling was proposed in the immunopathogenesis of primary Sjögren's disease. The efficacy of therapies targeting this pathway is currently unclear. Herein, we investigated the associations between circulating proteins involved in the IL-12 and IL-23 signalling pathways on primary Sjögren's disease using Mendelian randomization. METHODS We selected single nucleotide polymorphisms from protein quantitative trait loci of IL12A, IL12B, IL12Rβ1, IL12Rβ2 and IL23R to examine the association between alterations in their levels and risk of primary Sjögren's disease. Genetic association data for proteins were taken from studies ranging from 3301 to 54 306 in sample size, and from 3232 cases of primary Sjögren's disease and 17 481 controls. The Wald ratio or inverse variance weighted methods estimated causal effects. We applied colocalization and pleiotropy-robust methods as sensitivity analyses for confounding. RESULTS There was a negative association between genetically predicted IL-12p40 (encoded by IL12B) and primary Sjögren's disease. In the two independent exposure datasets odds ratio (OR), 0.79 (95% CI 0.68-0.93; P-value = 0.004) and OR 0.86 (95% CI 0.78-0.95; P-value = 0.003) per S.D. decrease in genetically predicted IL-12p40. Neither IL-12Rβ2 nor IL-23R met the threshold P-value after Mendelian randomization analyses (P-value < 0.01) for colocalization assessment. No variants for the IL12A gene met prerequisite thresholds for weak instrument bias. CONCLUSION This study provides genetic evidence that IL-12p40 has a causal role in primary Sjögren's disease pathogenesis. Our data suggest that decreasing levels of IL-12p40 may be deleterious. We would not suggest selecting this drug target as a therapeutic option.
Collapse
Affiliation(s)
| | - Zijing Yang
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Alasdair Warwick
- Institute of Cardiovascular Science, University College London, London, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Chris Wincup
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Mark D Russell
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - James B Galloway
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Sizheng Steven Zhao
- Faculty of Biological Medicine and Health, Centre for Musculoskeletal Research, School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Ramadan A, Gowaily I, Saleh O, Abuelazm M, Ahmad U, Elzeftawy MA, Nathan Ezie K, Abdelazeem B. The safety and efficacy of Baricitinib for systemic lupus erythematosus: a systematic review and meta-analysis of randomized controlled trials. Ann Med Surg (Lond) 2024; 86:6673-6685. [PMID: 39525758 PMCID: PMC11543213 DOI: 10.1097/ms9.0000000000002548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background and objective Baricitinib is a JAK1 and JAK2 inhibitor approved for treating active rheumatoid arthritis and atopic dermatitis. Therefore, the authors aim to evaluate the safety and efficacy of once-daily oral Baricitinib 2 mg or 4 mg versus placebo in active SLE patients receiving standard care. Methods The authors synthesized randomized controlled studies (RCTs) from MEDLINE, Scopus, EMBASE, PubMed, and Cochrane Library until 20 March 2023. The study protocol was registered in PROSPERO. Results Three RCTs with 1849 participants were included. The Baricitinib group had a significant SRI-4 response [RR: 1.11 with 95% CI (1.03, 1.21), P=0.008] and greater than or equal to 4-point SLEDAI-2K domain improvement [RR: 1.13 with 95% CI (1.02, 1.25), P=0.02] compared to the placebo group; however, there was no statistically significant difference between the two groups, regarding the secondary endpoints. For safety outcomes, Baricitinib was significantly associated with a higher incidence of Any serious adverse event [RR: 1.48 with 95% CI (1.07, 2.05), P=0.02]. Conclusion Baricitinib is associated with significant outcomes of SRI-4 response, greater than or equal to 4-point improvement SLEDAI-2K score, and Joint Indices. Regarding safety, there was no difference in the outcomes other than the serious adverse events.
Collapse
Affiliation(s)
- Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena
| | | | - Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Unaiza Ahmad
- Faculty of Medicine, Faisalabad Medical University, Faisalabad, Pakistan
| | | | - Kengo Nathan Ezie
- Faculty of Medicine and Biomedical Sciences of Garoua, University of Garoua, Garoua Cameroon
| | | |
Collapse
|
4
|
Yuan Z, Zhang W, Jin Z, Wang Y, Lin Z, Xie Z, Wang X. Global research trends in precision-targeted therapies for systemic lupus erythematosus (2003-2023): A bibliographic study. Heliyon 2024; 10:e33350. [PMID: 39050478 PMCID: PMC11268211 DOI: 10.1016/j.heliyon.2024.e33350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a persistent inflammatory disease caused by an autoimmune response that predominantly affects multiple organs and systems. Growing evidence highlights the critical role of precision-targeted therapies in the management of SLE. Surprisingly, only a handful of bibliometric studies have thoroughly assessed this area. This study attempts to assess the global landscape of literature output and research trends related to precision-targeted therapy for SLE. Method Publications related to precision-targeted therapy for SLE from 2003 to 2023 were searched in the Web of Science Core Collection (WoSCC) database. VOSviewers, CiteSpace and the R package "bibliometrix" were used to perform this bibliometric analysis. Results A total of 3700 papers were retrieved, showing a steady annual increase in publications from 2003 to 2022. The United States led the field with the highest number of papers (36.1 %) and secured the top position in terms of citation frequency (59,889) and H-index (115). Anhui Medical University System claimed the top spot with an impressive output of 70 papers. Principal investigators Tsokos, George C. C., and Lu, Qianjin led the research effort. Among the journals, Frontiers in Immunology stood out, publishing the highest number of articles with 191. In particular, precision-targeted therapy for SLE has become a major research focus in recent years, covering aspects such as T cells, B cells, oxidative stress, remission, and PHASE-III. Conclusion This bibliometric study of ours systematically analyses research trends in precision targeted therapy for systemic lupus erythematosus, and this information identifies the research frontiers and hot directions in recent years and will serve as a reference for scientists working on targeted therapies.
Collapse
Affiliation(s)
- Zengze Yuan
- The Second Clinical College of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Weiqing Zhang
- The Second Clinical College of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Zhaokai Jin
- The First Clinical College of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Yihan Wang
- The Second Clinical College of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Zhiting Lin
- The Second Clinical College of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Zhimin Xie
- The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| | - Xinchang Wang
- The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, HangZhou, China
| |
Collapse
|
5
|
Wang X, Deng GM. Animal models of studying the pathogenesis of multi-organ tissue damage in lupus. Clin Immunol 2024; 263:110231. [PMID: 38692449 DOI: 10.1016/j.clim.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
7
|
Wei L, Xiang Z, Zou Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int J Mol Sci 2023; 24:17545. [PMID: 38139373 PMCID: PMC10744089 DOI: 10.3390/ijms242417545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical, Central South University, Changsha 410083, China; (L.W.); (Z.X.)
| |
Collapse
|
8
|
Smith C, du Toit R, Ollewagen T. Potential of bone morphogenetic protein-7 in treatment of lupus nephritis: addressing the hurdles to implementation. Inflammopharmacology 2023; 31:2161-2172. [PMID: 37626268 PMCID: PMC10518293 DOI: 10.1007/s10787-023-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Up to 50% of systemic lupus erythematosus (SLE) patients world-wide develop lupus nephritis (LN). In low to middle income countries and in particular in sub-Saharan Africa, where SLE is prevalent with a more aggressive course, LN and end stage renal disease is a major cause of mortality. While developed countries have the funding to invest in SLE and LN research, patients of African descent are often underrepresented in clinical trials. Thus, the complex influence of ethnicity and genetic background on outcome of LN and SLE as a whole, is not fully understood. Several pathophysiological mechanisms including major role players driving LN have been identified. A large body of literature suggest that prevention of fibrosis-which contributes to chronicity of LN-may significantly improve long-term prognosis. Bone morphogenetic protein-7 (BMP-7) was first identified as a therapeutic option in this context decades ago and evidence of its benefit in various conditions, including LN, is ever-increasing. Despite these facts, BMP-7 is not being implemented as therapy in the context of renal disease. With this review, we briefly summarise current understanding of LN pathology and discuss the evidence in support of therapeutic potential of BMP-7 in this context. Lastly, we address the obstacles that need to be overcome, before BMP-7 may become available as LN treatment.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| | - Riette du Toit
- Division Rheumatology, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
9
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Fasano S, Milone A, Nicoletti GF, Isenberg DA, Ciccia F. Precision medicine in systemic lupus erythematosus. Nat Rev Rheumatol 2023; 19:331-342. [PMID: 37041269 DOI: 10.1038/s41584-023-00948-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that has diverse clinical manifestations, ranging from restricted cutaneous involvement to life-threatening systemic organ involvement. The heterogeneity of pathomechanisms that lead to SLE contributes to between-patient variation in clinical phenotype and treatment response. Ongoing efforts to dissect cellular and molecular heterogeneity in SLE could facilitate the future development of stratified treatment recommendations and precision medicine, which is a considerable challenge for SLE. In particular, some genes involved in the clinical heterogeneity of SLE and some phenotype-related loci (STAT4, IRF5, PDGF genes, HAS2, ITGAM and SLC5A11) have an association with clinical features of the disease. An important part is also played by epigenetic varation (in DNA methylation, histone modifications and microRNAs) that influences gene expression and affects cell function without modifying the genome sequence. Immune profiling can help to identify an individual's specific response to a therapy and can potentially predict outcomes, using techniques such as flow cytometry, mass cytometry, transcriptomics, microarray analysis and single-cell RNA sequencing. Furthermore, the identification of novel serum and urinary biomarkers would enable the stratification of patients according to predictions of long-term outcomes and assessments of potential response to therapy.
Collapse
Affiliation(s)
- Serena Fasano
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Alessandra Milone
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - David A Isenberg
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
11
|
Sjöwall C. Time to reassess inclusion of laboratory items in SLE trial endpoints? THE LANCET. RHEUMATOLOGY 2022; 4:e807-e808. [PMID: 38261384 DOI: 10.1016/s2665-9913(22)00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|